Skip to main content

Computational Modeling of Biological Processes with Petri Net-Based Architecture

  • Chapter
Bioinformatics Technologies

Conclusion

To accomplish the objective in Section 7.1, we discussed the importance of a biological processes development environment that can easily and smoothly support (i) modeling of biological processes, (ii) simulation of biological processes, (iii) visualization of their simulations, and (iv) integration of existing biological pathway databases for modeling, and we developed their applications, (i/ii) GON, GONML, (iii) Visualizer, and (iv) BPE, BPEOS, while developing the new Petri net-based architecture HFPN/HFPNe that is suitable for modeling and simulation of complex biological processes.

It must be noted that in our development environment, one unknown biological phenomenon in multicellular systems was discovered (Matsuno et al., 2003b). In Matsuno et al. (2003b), the mechanism of Notch-dependent boundary formation in the Drosophila large intestine is analyzed by comparing experimental manipulation of Delta expression with modeling and simulation results in our development environment. Boundary formation representing the situation in normal large intestine was shown by the simulation. By manipulating the Delta expression in the large intestine, a few types of disorder in boundary cell differentiation were observed, and similar abnormal patterns were generated by the simulation. These simulation results suggest that values of parameters which represent the strength of cell-autonomous suppression of Notch signaling by Delta are essential for generating two different modes of patterning; lateral inhibition and boundary formation, which could explain how a common gene regulatory network results in two different patterning modes in vivo.

The fact that the discovery was accomplished in our environment is important. Another important thing is the process of discovery; the project members, mainly Matsuno and members of the Murakami developmental biology laboratory, have weekly communicated the biological processes by modeling and simulating in our development environment, the GON and Visualizer. These two facts reveal comprising the concepts of our objective are important, and our architecture and applications are acceptable in actual research fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alla, H. and David, R. (1998) Continuous and hybrid Petri nets. Journal of Circuits, Systems, and Computers8: 159–188.

    Article  MathSciNet  Google Scholar 

  • Amara, S.G. and Jonas, V., Rosenfeld, M.G. Ong, E.S. and Evans, R.M. (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298: 240–244.

    Article  Google Scholar 

  • Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M. and Sherlock, G. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25 25–29.

    Google Scholar 

  • Bates, G., Harper, P. and Jones, L., eds 2002) untington’s Disease. 3rd edn. Oxford University Press.

    Google Scholar 

  • Becker, U. and Moldt, D. (1993) Object-oriented concepts for coloured Petri nets. In: IEEE International Conference on Systems, Man and Cybernetics. Volume 3., IEEE, 279–286.

    Google Scholar 

  • Berg, J.M., Stryer, L. and Tymoczko, J.L. (2002) Biochemistry. 5th edn. W.H. Freeman.

    Google Scholar 

  • Billington, J., Christensen, S., van Hee, K.M., Kindler, E., Kummer, O., Petrucci, L., Post, R., Stehno, C. and Weber, M. (2003) The Petri net markup language: concepts, technology, and tools. In: Applications and Theory of Petri Nets 2003, 24th International Conference (ICATPN). Volume 2679 of Lecture Notes in Computer Science., Springer-Verlag, 483–505. BPEOS: http://bpe.genomicobject.net/. Cell Designer: http://sbserv.symbio.jst.go.jp/. CellML: http://www.cellml.org/.

    Google Scholar 

  • Chen, M., Ona, V.O., Li, M., Ferrante, R.J., Fink, K.B., Zhu, S., Bian, J., Guo, L., Farrell, L.A., Hersch, S.M., Hobbs, W., Vonsattel, J.P., Cha, J.H. and Friedlander, R.M. (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat. Med. 6: 797–801.

    Article  Google Scholar 

  • Coleman, T.P., Tran, Q. and Roesser, J.R. (2003) Binding of a candidate splice regulator to a calcitonin-specific splice enhancer regulates calcitonin/CGRP pre-mRNA splicing. Biochim. Biophys. Acta. 1625153–164. CORBA: http://www.omg.org/.

    Google Scholar 

  • David, R. and Alla, H.: Continuous Petri nets. In: 8th European Workshop on Application and Theory of Petri Nets. Volume 340 of Lecture Notes in Computer Science. Springer-Verlag (1987) 275–294 Delphi: http://www.borland.com/delphi/. Design/CPN: http://www.daimi.au.dk./designCPN/.

    Google Scholar 

  • Doi, A., Fujita, S., Matsuno, H., Nagasaki, M. and Miyano, S. (2004) Constructing biological pathway models with hybrid functional Petri nets. In Silico Biology, Submitted.

    Google Scholar 

  • Doi, A., Nagasaki, M., Fujita, S., Matsuno, H. and Miyano, S. (2004) Genomic Object Net:II. Modeling biopathways by hybrid functional Petri net with extension. Applied Bioinformatics 2: 185–188.

    Google Scholar 

  • Drath, R. (1998) Hybrid object nets: an object oriented concept for modeling complex hybrid systems. In: 3rd International Conference on Automation of Mixed Processes: Hybrid Dynamical Systems (ADPM), Shaker Verlag, 437–442.

    Google Scholar 

  • Drath, R, Engmann, U. and Schwuchow, S. (1999) Hybrid aspects of modeling manufacturing systems using modified Petri nets. In: 5th Workshop on Intelligent Manufacturing Systems. http://www.systemtechnik.tu-ilmenau.de/~drath/ download/Brasil98.ps.zip.

    Google Scholar 

  • Extensible markup language (XML) (1998) http://www.w3.org/XML/.

    Google Scholar 

  • Genomic Object Net (GON): http://GenomicObject.net/.

    Google Scholar 

  • Genrich, H., Kuffner, R. and Voss, K. (2001) Executable Petri net models for the analysis of metabolic pathways. International Journal on Software Tools for Technology Transfer (STTT) 3: 394–404.

    MATH  Google Scholar 

  • GTL Scientific Plan: http://www.doegenomestolife.org/.

    Google Scholar 

  • Hackam, A.S., Singaraja, R., Wellington, C.L. Metzler, M., McCutcheon, K., Zhang, T., Kalchman, M. and Hayden, M.R. (1998) The influence of huntingtin protein size on nuclear localization and cellular toxicity. J. Cell. Biol. 141: 1097–1105.

    Article  Google Scholar 

  • Heiner, M., Koch, I. and Voss, K. (2001) Analysis and simulation of steady states in metabolic pathways with Petri nets. In: Third Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN tools. 15–34 http://www.daimi.au.dk/CPnets/workshop01/cpnpapers/PB554.pdf. HFPNe generic models: http://genomicobject.net/public/BiotechBook2004/code/.

    Google Scholar 

  • Hickey, M.A. and Chesselet, M.F. (2003)Apoptosis in Huntingtons disease. Prog Neuropsychopharmacol Biol Psychiatry 27: 255–265.

    Article  Google Scholar 

  • Hofestädt, R. (1994) A Petri net application of metabolic processes. J. System Analysis, Modeling and Simulation16: 113–122.

    MATH  Google Scholar 

  • Hofestädt, R. and Thelen, S. (1998) Quantitative modeling of biochemical networks. In Silico Biol. 1: 39–53.

    Google Scholar 

  • Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H. Arkin, A.P., Bornstein, B.J., Bray, D., Cornish-Bowden, A., Cuellar, A.A., Dronov, S., Gilles, E.D., Ginkel, M., Gor, V., Goryanin, I.I., Hedley, W.J., Hodgman, T.C., Hofmeyr, J.H., Hunter, P.J., Juty, N.S., Kasberger, J.L., Kremling, A., Kummer, U., Le Novere, N., Loew, L.M., Lucio, D., Mendes, P., Minch, E., Mjolsness, E.D., Nakayama, Y., Nelson, M, R., Nielsen, P.F., Sakurada, T., Schaff, J.C., Shapiro, BE., Shimizu, T.S., Spence, H.D., Stelling. J., Takahashi, K., Tomita, M., Wagner, J. and Wang, J. (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics19: 524–531.

    Article  Google Scholar 

  • Jacks, T., Power, M.D., Masiarz, F.R., Luciw, P.A., Barr, P.J. and Varmus, H.E. (1988) Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 331: 280–283.

    Article  Google Scholar 

  • Kanehisa, M. and Goto, S. (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28: 27–30.

    Article  Google Scholar 

  • Karp, P.D., Riley, M., Paley, S.M. and Pellegrini-Toole, A.: The MetaCyc Database. Nucleic Acids Res. 30 (2002) 59–61.

    Google Scholar 

  • Karp, P.D., Riley, M., Saier, M., Paulsen, I.T., Collado-Vides, J., Paley, S.M., Pellegrini-Toole, A., Bonavides, C. and Gama-Castro, S.: The EcoCyc Database. Nucleic Acids Res. 30 (2002)56–58.

    Google Scholar 

  • Kim, Y.J., Yi, Y., Sapp, E., Wang, Y., Cuiffo, B., Kegel, K.B., Qin Z.H., Aronin, N. and DiFiglia, M. (2001) Caspase 3-cleaved N-terminal fragments of wildtype and mutant huntingtin are present in normal and Huntington’s disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc. Natl. Acad. Sci. U. S. A. 98: 12784–12789.

    Google Scholar 

  • Kohn, K.W. (1999) Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol. Biol. Cell. 10: 2703–2734.

    Google Scholar 

  • Kuipers, B.J., Shults, B. (1994) Reasoning in logic about continuous systems. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fourth International Conference (KR94), Morgan Kaufmann, 391–402.

    Google Scholar 

  • Kummer, O. (2001) Introduction to Petri nets and reference nets. Sozionik Aktuell 1–9.

    Google Scholar 

  • Maier, C. and Moldt, D. (2001) Object coloured Petri nets-a formal technique for object oriented modeling. In: Concurrent Object-Oriented Programming and Petri Nets, Advances in Petri Nets. Volume 2001 of Lecture Notes in Computer Science., Springer-Verlag, 406–427.

    Google Scholar 

  • Martin, J.B. and Gusella, J.F. (1986) Huntington’s disease. Pathogenesis and management. N. Engl. J. Med. 315: 1267–1276. MathML: http://www.w3.org/mathml/.

    Google Scholar 

  • Matsui, M., Fujita, S., Suzuki, S., Matsui, M.H.M. and Miyano, S. (2004) Simulated cell division processes of the Xenopus cell cycle pathway by Genomic Object Net. Journal of Integrative Bioinformatics 0001, Online Journal: http://journal.imbio.de/index.php?paper_id=3.

    Google Scholar 

  • Matsuno, H., Doi, A., Hirata, Y. and Miyano, S. (2001) XML documentation of biopathways and their simulations in Genomic Object Net. Genome Informatics 1254–62.

    Google Scholar 

  • Matsuno, H., Doi, A., Nagasaki, M. and Miyano, S. (2000) Hybrid Petri net representation of gene regulatory network. Pacific Symposium on Biocomputing 5: 341–352

    Google Scholar 

  • Matsuno, H., Fujita, S., Doi, A., Nagasaki, M. and Miyano, S. (2003) Towards biopathway modeling and simulation. In: 24th International Conference on Applications and Theory of Petri Nets (ICATPN 2003). Volume 2679., Lecture Notes in Computer Science, 3–22

    MathSciNet  Google Scholar 

  • Matsuno, H., Murakami, R., Yamane, R., Yamasaki, N., Fujita, S., Yoshimori, H. and Miyano, S. (2003) Boundary formation by notch signaling in Drosophila multicellular systems: experimental observations and gene network modeling by Genomic Object Net. Pacific Symposium on Biocomputing 8: 152–163.

    Google Scholar 

  • Matsuno, H., Tanaka, Y., Aoshima, H., Doi, A., Matsui, M. and Miyano, S. (2003) Biopathways representation and simulation on hybrid functional Petri net. In Silico Biol. 3: 389–404.

    Google Scholar 

  • Matsuoka, S., Sarai, N., Kuratomi, S., Ono, K. and Noma, A. (2003) Role of individual ionic current systems in ventricular cells hypothesized by a model study. The Japanese Journal of Physiology 53: 105–123.

    Article  Google Scholar 

  • Mendes, P. (1993) GEPASI: a software package for modeling the dynamics, steady states and control of biochemical and other systems. Comput. Appl. Biosci. 9: 563–571. Molecular Cell Biology Media Resources: http://www.whfeeman.com/lodish/.

    Google Scholar 

  • Nagasaki, M. (2004) A Platform for Biopathway Modeling/Simulation and Recreating Biopathway Databases Towards Simulation, Ph. D Thesis, The University of Tokyo, http://genomicobject.net/pub/nagasaki_phd.pdf.

    Google Scholar 

  • Nagasaki, M., Doi, A., Matsuno and H., Miyano, S, (2003) Recreating biopathway databases towards simulation. In: Computational Methods in Systems Biology. Volume 2602 of Lecture Notes in Computer Science., Springer-Verlag, 191–192.

    Google Scholar 

  • Nagasaki, M., Doi, A., Matsuno, H. and Miyano, S. (2004) A versatile Petri net based architecture for modeling and simulation of complex biological processes. Genome Informatics 14, Submitted.

    Google Scholar 

  • Nagasaki, M., Doi, A., Matsuno, H. and Miyano, S. (2004) Genomic Object Net:I. A platform for modeling and simulating biopathways. Applied Bioinformatics 2: 181–184.

    Google Scholar 

  • Nagasaki, M., Doi, A., Matsuno, H. and Miyano, S. (2004) Integrating biopathway databases for large-scale modeling and simulation. In: The Second Asia-Pacific Bioinformatics Conference. 29 of Conferences in Research and Practice in Information Technology., Australian Computer Society, 43–52

    Google Scholar 

  • Nagasaki, M., Onami, S., Miyano, S. and Kitano, H. (1999) Bio-calculus: its concept and molecular interaction. Genome Informatics 10: 133–143.

    Google Scholar 

  • Nakano, M., Kitakaze, H., Matsuno, H. and Miyano, S. (2002) XML pathway file conversion between Genomic Object Net and SBML. Genome Informatics 13: 457–458.

    Google Scholar 

  • Olaf. K., Frank, W. (2000) Renew-the reference net workshop. In: 21st International Conference on Application and Theory of Petri Nets. 1825 Lecture Notes in Computer Science., Springer-Verlag, 87–89 http://www.informatik.uni-hamburg.de/TGI/renew/renew.html.

    Google Scholar 

  • Onami, S., Hamahashi, S., Nagasaki, M., Miyano, S. and Kitano, H. (2001) Automatic acquisition of cell lineage through 4D microscopy and analysis of early C. elegans embryogenesis. MIT Press

    Google Scholar 

  • Overbeek, R., Larsen, N., Pusch, G.D., D’souza, M., Selkov, E.J., Kyrpides, N., Fonstein, M., Maltsev, N. and Selkov, E. (2000) WIT: integrated system for highthroughput genome sequence analysis and metabolic reconstruction. Nucleic Acids Res. 28 123–125.

    Article  Google Scholar 

  • PathPursuit: http://www.scbio.co.jp/products/pathpursuit/index.html.

    Google Scholar 

  • Petri net community: http://www.daimi.au.dk/PetriNets/tools/.

    Google Scholar 

  • Pnuts: http://www.pnuts.org/.

    Google Scholar 

  • PnutsSyntax: http://pnuts.org/snapshot/latest/doc/lang-TOC.html.

    Google Scholar 

  • Reddy, V.N., Mavrovouniotis, M. L, Liebman, M.N. (1993) Petri net representations in metabolic pathways. In: Proceedings First International Conference on Intelligent Systems for Molecular Biology. Volume 1., MIT Press, 328–336. Regular language description for XML (Relax) (2000) http://www.xml.gr.jp/relax/.

    Google Scholar 

  • Reisig, W. and Rozenberg, G., eds. (1998) Lecture on Petri nets I: Basic Models Lecture Notes in Computer Science. Volume 1491 of Lecture Notes in Computer Science. Springer-Verlag.

    Google Scholar 

  • Reisig, W. and Rozenberg, G., eds. (1998) Lecture on Petri nets II: Applications Lecture Notes in Computer Science. Volume 1492 of Lecture Notes in Computer Science Springer-Verlag.

    Google Scholar 

  • Roizin, L., Stellar, S. and Liu, J.C. (1979) Neuronal nuclear-cytoplasmic changes in Huntington’s chorea: electron microscope investigations. Raven Press, pp 95–122.

    Google Scholar 

  • Roy, S., Bayly, C.I., Gareau, Y., Houtzager, V.M., Kargman, S., Keen, S.L., Rowland, K., Seiden, I.M., Thornberry, N.A., Nicholson, D.W. (2001) Maintenance of caspase-3 proenzyme dormancy by an intrinsic “safety catch” regulatory tripeptide. Proc. Natl. Acad. Sci. U. S. A. 98: 6132–6137.

    Article  Google Scholar 

  • Schaff, J., Fink, C.C., Slepchenko, B., Carson, J.H. and Loew, L.M. (1997) A general computational framework for modeling cellular structure and function. Biophys. J. 73: 1135–1146.

    Article  Google Scholar 

  • Schomburg, I., Chang, A. and Schomburg, D. (2002) BRENDA, enzyme data and metabolic information. Nucleic Acids Resa. 30: 47–49.

    Google Scholar 

  • Senut, M.C., Suhr, S.T., Kaspar, B. and Gage, F.H. (2000) Intraneuronal aggregate formation and cell death after viral expression of expanded polyglutamine tracts in the adult rat brain. J. Neurosci. 20: 219–229

    Google Scholar 

  • The Huntington’s disease collaborative research group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72: 971–83

    Google Scholar 

  • Tomita, M. (2001) Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol. 19: 205–210

    Article  Google Scholar 

  • Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T.S., Matsuzaki, Y., Miyoshi, F., Saito, K., Tanida, S., Yugi, K. and Venter, J.C., Hutchison CA 3rd (1999) E-CELL: software environment for whole-cell simulation. Bioinformatics 15: 72–84.

    Article  Google Scholar 

  • Tran, Q., Coleman, T.P. and Roesser, J.R. (2003) Human transformer 2beta and SRp55 interact with a calcitonin-specific splice enhancer. Biochim. Biophys. Acta. 1625: 141–152.

    Google Scholar 

  • Valk, R. (1978) Self-modifying nets, a natural extension of Petri nets. In: International Colloquium on Automata, Languages and Programming (ICALP). Volume 62 of Lecture Notes in Computer Science., Springer-Verlag, pp 464–476

    MATH  MathSciNet  Google Scholar 

  • Voet, D. and Voet, J.G. (1995) BIOCHEMISTRY. 2nd edn. John Wiley Sons, Inc. VON++: http://www.systemtechnik.tu-ilmenau.de/~drath/visual_E.htm.

    Google Scholar 

  • Webster, S.D., Cason, Z., Lemos, L.B. and Benghuzzi, H. (2000) Cytohistologic correlation in patients with clinical symptoms of postmenopausal bleeding. Biomed. Sci. Instrum. 36: 367–372.

    Google Scholar 

  • Wellington, C.L., Ellerb L.M., Gutekunst, C.A., Rogers, D., Warby, S., Graham, R.K., Loubser, O., van, R.J., Singaraja, R., Yang, Y.Z., Gafni, J., Bredesen, D., Hersch, S.M., Leavitt, B.R., Roy, S. and Nicholson, D.W. and Hayden, M.R. (2002) Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington’s disease. J. Neurosci. 22: 7862–7872.

    Google Scholar 

  • Wellington, C.L., Ellerby, L.M., Hackam, A.S., Margolis, R.L., Trifiro, M.A., Singaraja, R., McCutcheon, K., Salvesen, G.S., Propp, S.S., Bromm, M., Rowland, K.J., Zhang, T., Rasper, D., Roy, S., Thornberry, N., Pinsky, L., Kakizuka, A., Ross, C.A., Nicholson, D.W., Bredesen, D.E. and Hayden, M.R. (1998) Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J. Biol. Chem. 273: 9158–9167.

    Article  Google Scholar 

  • Wheeler, V.C., White, J.K., Gutekunst, C, A., Vrbanac, V., Weaver, M., Li, X.J., Li, S.H., Yi, H., Vonsattel, J.P., Gusella, J.F., Hersch, S., Auerbach, W., Joyner, A.L. and MacDonald, M.E. (2000) Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice. Hum. Mol. Genet. 9: 503–513.

    Article  Google Scholar 

  • XML Schema Part 0: Primer, W3C Working Draft (2000) http://www.w3.org/TR/xmlschema-0/.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Hiedelberg

About this chapter

Cite this chapter

Nagasaki, M., Doi, A., Matsuno, H., Miyano, S. (2005). Computational Modeling of Biological Processes with Petri Net-Based Architecture. In: Chen, YP.P. (eds) Bioinformatics Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26888-X_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-26888-X_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20873-0

  • Online ISBN: 978-3-540-26888-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics