Skip to main content

Spatial-Temporal Information: Statistical and Causal-Model Development

  • Chapter
Location, Transport and Land-Use
  • 1876 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, H. (1976). "Canonical correlation analysis of time series and the use of an information theoretic criterion." in System Identification: Advances and Case Studies (R. K. Mehra and D. G. Lainiotis, Editors), Academic Press, New York, New York.

    Google Scholar 

  • Alam, S. B.; Goulias, K. G. (1999). "Dynamic emergency evacuation management system using GIS and spatio-temporal models of behavior." Pre-print, 78th Annual Meeting of the Transportation Research Board, National Research Council, Washington, D.C.

    Google Scholar 

  • Allard, D.; Fraley, C. (1997). "Nonparmetric maximum likelihood estimation of features in spatial point processes using Voronoi tessellation." Journal of the American Statistical Association, Vol. 92, No. 440, pp. 1485–1493.

    MATH  Google Scholar 

  • Anselin, L. (1988). Spatial Econometrics: Methods and Models. Kluwer Academic Publishers, Norwell, Massachusetts.

    Google Scholar 

  • Arbia, G.; Benedetti, R.; Espa, G. (1996). "Effects of the Modifiable-Areal-Unit-Program on image classification." Geographical Systems, Vol. 3, pp. 123–141.

    Google Scholar 

  • Armstrong Jr., R. J. (1994). "Impact of commuter rail service as reflected in single-family residential property values." Preprint No. 940774, 73rd Annual Meeting, Transportation Research Board, Washington, D.C.

    Google Scholar 

  • Aykroyd, R. G.; Zimeras, S. (1999). "Inhomogeneous prior models for image reconstruction." Journal of the American Statistical Association, Vol. 94, No. 447, pp. 934–946.

    MathSciNet  MATH  Google Scholar 

  • Bagley, M. N.; Mokhtarian, P. L.; Kitamura, R. (2000). “A methodology for the disaggregate, multimmensioanl measurement of residential neighborhood type.” Working Paper, Institute of Transportation Studies, University of California, Davis, California.

    Google Scholar 

  • Bazarraa, M. S.; Shetty, C. M. (1979). Nonlinear Programming: Theory and Algorithms. Wiley, New York, New York.

    Google Scholar 

  • Bailey, T. C; Munford, A. G. (1994). "Modelling a large, sparse spatial interaction matrix using data relating to a subset of possible flows." European Journal of Operational Research, Vol. 79, pp. 489–500.

    Article  MATH  Google Scholar 

  • Bao, S.; Henry, M. (1996). "Heterogeneity issues in local measurements of spatial association." Geographical Systems, Vol 3, pp. 1–13.

    Google Scholar 

  • Beasley, J. E.; Goffinet, F. (1994). "A Delaunay triangulation-based heuristic for the Euclidean Steiner problem." Networks, Vol. 24, pp. 215–224.

    MATH  Google Scholar 

  • Beeker, E. (1998). "An efficient algorithm for calculating shortest paths while avoiding obstacles." Abstracts, Working Group 31, 66th Military Operations Research Society Symposium, Military Operations Research Society, Alexandria, Virginia.

    Google Scholar 

  • Besag, J. (1974). "Spatial interaction and the statistical analysis of lattice systems." Journal of the Royal Statistical Society, Vol. 36, pp. 192–236.

    MATH  MathSciNet  Google Scholar 

  • Besag, J. (1986). "On the statistical analysis of dirty pictures." Journal of the Royal Statistical Society, Vol. 48, pp. 259–302.

    MATH  MathSciNet  Google Scholar 

  • Black, J. A.; Paez, A.; Suthanaya, P. A. (2002). “Sustainable urban transportation: Performance indicators and some analytical approaches.” Journal of Urban Planning and Development, Vol. 128, No. 4, pp. 184–209.

    Article  Google Scholar 

  • Black, W. R. (1992). "Network autocorrelation in transport network and flow systems." Geographical Analysis, Vol. 24, No. 3, pp. 207–222.

    Article  Google Scholar 

  • Black, W. R. (1993). "Network autocorrelation in the analysis of flows on transportation Networks." presented at the Operations Research Society of America National Meeting in Chicago, May 16–19.

    Google Scholar 

  • Box, G. E. P.; Draper, N. R. (1987). Empirical Model Building and Response Surface, Wiley, New York, New York.

    Google Scholar 

  • Box, G. E. P.; Jenkins, G. M. (1976). Time Series Analysis — Forecasting and Control, Holden-Day, Oakland, California.

    MATH  Google Scholar 

  • Campbell, J. F. (1993). "Continuous and discrete demand hub location problems." Transportation Research B, Vol. 27B, pp. 473–482.

    Article  Google Scholar 

  • Chan, Y. (2000). Location Theory and Decision Analysis. Thomson/South-Western, Cincinnati, Ohio.

    Google Scholar 

  • Chan, Y.; Regan, E.; Pan, W-M. (1986). "Inferring an origin-destination matrix directly from network-flow sampling." Transportation Planning and Technology, Vol. 11, pp. 27–46.

    Google Scholar 

  • Chan, Y.; Rahi, M. Y. (1993). "An l p-norm origin-destination estimation method that minimizes site-specific data requirements." Transportation Research Record, No. 1413, pp. 130–140.

    Google Scholar 

  • Cook, T.; Falch, P.; Marino, R. (1984). "An urban allocation model combining time series and analytic hierarchial methods." Management Science, Vol. 30, pp. 198–208.

    Google Scholar 

  • Cox, K. R.; Agnew, J. A. (1976). "The spatial correspondence of theoretical partitions." Department of Geography, Discussion paper series, No. 24, Syracuse University, New York.

    Google Scholar 

  • Cromley, R. O.; Hempel, D. J.; Hillyer, C. L. (1993). "Dimensions of market attractiveness: competitively interactive spatial models." Decision Sciences, Vol. 24, pp. 713–738.

    Google Scholar 

  • Dahl, C. M. Gonzales-Rivera, G. (2003). “Testing for neglected nonlinearity in regression models based on the theory of random fields.” Journal of Econometrics, Vol. 114, pp. 141–164.

    Article  MathSciNet  MATH  Google Scholar 

  • Dasci, A.; Laporte, G. (2002). “Location and pricing decisions of a multi-store monopoly in a spatial market.” Working Paper, Ecole des Hautes Etudes Commerciales, Montreal, Canada.

    Google Scholar 

  • de la Figuera, D. S.; Ravelle, C. (1993). "The pq-median problem: location and districting of hierarchical facilities." Location Science, Vol. 1, pp. 299–312.

    MATH  Google Scholar 

  • de Oliveira, V.; Kadem, B.; Short, D. A. (1997). "Bayesian prediction of transformed Gaussian random fields." Journal of the American Statistical Association, Vol. 92, No. 440, pp. 1422–1433.

    MathSciNet  MATH  Google Scholar 

  • Eaton, B.C.; Lipsey R. G. (1975). "The non-uniqueness of equilibrium in the Löschan location model." The American Economic Review, Vol. 66, pp. 77–93.

    Google Scholar 

  • Feng, C-M.; Chang, C-Y. (1993). "A transit-oriented land use model." Transportation Planning Journal, Vol. 22, pp. 429–444, Ministry of Transportation and Communication, Republic of China (in Chinese).

    Google Scholar 

  • Ference, A.; Chan, Y. (1996). "Spatial dependence, homogeneity, and isotropy of the Washington DC Mall image." Working paper, Department of Operational Sciences, Air Force Institute of Technology, Wright-Patterson AFB, Ohio.

    Google Scholar 

  • Fernandez, E.; Garfinkel, R.; Arbiol, R. (1998). "Mosaicking of aerial photographic maps via seams defined by bottleneck shortest paths." Operations Research, Vol. 46, No. 3, pp. 293–304.

    Article  MATH  Google Scholar 

  • Fortmann, K.; Chan, Y. (1994). "Analysis of spatial-temporal information: testing for spatial heterogeneity." Working paper, Department of Operational Sciences, Air Force Institute of Technology, Wright-Patterson AFB, Ohio.

    Google Scholar 

  • Fotheringham, A. S.; O'Kelley, M. E. (1989). Spatial Interaction Models and Applications, Kluwer Academic Press.

    Google Scholar 

  • Frost, R. B. (1992). "Directed graphs and misconceptions and more efficient methods." Engineering Optimization, Vol. 20, pp. 225–239.

    Google Scholar 

  • Getis, A. (1991). "Spatial interaction and spatial autocorrelation: a cross-product approach." Environment and Planning A, Vol. 23, pp. 1269–1277.

    Google Scholar 

  • Getis, A.; Ord, J. K. (1992). "The analysis of spatial association by use of distance statistics." Geographical Analysis, Vol. 24, No. 3, pp. 189–206.

    Article  Google Scholar 

  • Grant, M.; Robinson, J. N. (1989). "Time Series Forecasting." Working paper, Department of Operational Sciences, Air Force Institute of Technology, Wright-Patterson AFB, Ohio.

    Google Scholar 

  • Guy, C. M. (1991). "Spatial interaction in retail planning practice: the need for robust statistical methods." Environment and Planning B: Vol. 18, pp. 191–203.

    Google Scholar 

  • Hunt, J. D.; Simmonds, D. C. (1993). "Theory and applications of an integrated land-use and transport modeling framework." Environment and Planning B, Vol. 20, pp. 221–244.

    Google Scholar 

  • Imai, T. (1994). "Manual of SEGVOR: a FORTRAN program for constructing the Voronoi Diagram of Line Segments." Department of Mathematical Engineering and Information Physics, University of Tokyo, Tokyo, Japan.

    Google Scholar 

  • Ioannides, Y. M.; Overman, H. G. (2003). “Zipf's law for cities: an empirical examination.” Regional Science & Urban Economics, Vol. 33, pp. 127–137.

    Article  Google Scholar 

  • Kelejian, H. H.; Prucha, I. R. (2001). “On the asymptotic distribution of the Moran I test statistic with applications.” Journal of Econometrics, Vol. 104, Issue 2, pp. 219–257.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, D. S.; Chung, H. W. (2000). “Spatial location-allocation models for multiple center villages.” Working Paper, College of Agriculture a& Life Sciences, Seoul National University, Suwon, Republic of Korea.

    Google Scholar 

  • Ko, C-W.; Lee, J.; Queyranne, M. (1995). "An exact algorithm for maximum entropy sampling." Operations Research, Vol. 43, pp. 684–691.

    MathSciNet  MATH  Google Scholar 

  • Lautso, K.; Toivanen, S. (1997). "The SPARTCUS system for analysing urban sustainability." Working paper, LT Consultants Ltd., Helsinki, Finland.

    Google Scholar 

  • Mackett, R. (1993). "Structure of linkages between transport and land use." Transportation Research B, Vol. 27B, pp. 189–206.

    Article  Google Scholar 

  • Makridakis, S.; Wheelwright, S. C. (1978). Forecasting Methods and Applications, Wiley, New York, New York.

    Google Scholar 

  • Marshall, K. T.; Oliver, R. M. (1995). Decision Making and Forecasting, McGraw-Hill, New York, New York.

    Google Scholar 

  • Masser, I.; Coleman, A.; Wynn, R. F. (1971). "Estimation of a growth allocation model for north-west England." Environment and Planning, Vol. 3, pp. 451–463.

    Google Scholar 

  • Maurkio, J. A. (1995). "Exact maximum likelihood estimation of stationary vector ARMA model." Journal of the American Statistical Association, Vol. 90, pp. 282–291.

    MathSciNet  Google Scholar 

  • McCord, M. R.; Jafar, F.; Merry, C. J. (1996). "Estimated satellite coverage for traffic data collection." Working paper, Department of Civil & Environmental Engineering and Geodetic Science, Ohio State University, Columbus, Ohio.

    Google Scholar 

  • Melachrinondis, E.; Xanthropulos, Z. (1994) "A Euclidean distance single facility location problem with minisum and maximin objectives." Working paper, Department of Industrial Engineering and Information Ssytems, Northeastern University, Boston, Massachusetts.

    Google Scholar 

  • Oishi, Y.; Sugihara, K. (1995). "Topology-oriented divide-and-conquer algorithm for Voronoi diagrams." Graphical Models and Image Processing, Vol. 57, pp. 303–314.

    Article  Google Scholar 

  • Okabe, A.; Boots, B.; Sugihara, K. (1994). "Nearest neighborhood operations with generalized Voronoi diagrams: a review." International Journal of Geographic Information Systems, Vol. 8, pp. 43–71.

    Google Scholar 

  • Okabe, A.; Suzuki (1987). "Stability of spatial competition for a large number of firms on a bounded two-dimensional space." Environment and Planning A, Vol. 19, pp. 1067–1082.

    Google Scholar 

  • Okabe, A.; Boots, B.; Sugihara, K. (1992). Spatial Tessellations Concepts and Applications of Voronoi Diagrams, Wiley, New York, New York.

    MATH  Google Scholar 

  • Peruggia, M.; Santner, T. (1995). "Bayesian analysis of time evolution of earthquakes." Working paper, Department of Statistics, Ohio State University, Columbus, Ohio.

    Google Scholar 

  • Pfeifer, P. E.; Deutsch, S. J. (1980). "A three-stage iterative procedure for space-time modelling." Technometrics, Vol. 22, pp. 35–47.

    MATH  Google Scholar 

  • Pfeifer, P. E.; Bodily, S. E. (1990). "A test of space-time ARMA modelling and forecasting of hotel data." Journal of Forecasting, Vol. 9, pp. 255–272.

    Google Scholar 

  • Pierce, B. K.; Kinateder, J. G. (1999). "Incorporating geographic correlation when sampling a transportation network." Transportation Research Record, No. 1665, pp. 13–21.

    Google Scholar 

  • Pooler, J. (1992). "Spatial uncertainty and spatial dominance in interaction modelling: a theoretical perspective on spatial competition." Environment and Planning A, Vol. 24, pp. 995–1008.

    Google Scholar 

  • Priebe, C. E.; Olson, T.; Healy, D.M. (1997). "A spatial scan statistic for stochastic scan partitions." Journal of the American Statistical Association, Vol. 92, No. 440, pp. 1476–1484.

    MathSciNet  MATH  Google Scholar 

  • Priestley, M. B. (1988). Non-linear and Non-stationary Time Series Analysis, Academic Press, London, United Kingdom.

    Google Scholar 

  • Putman, S. (1979). "Urban Residential Location Models." Martinus Nijhoff Publishing, Hingham, Massachusetts.

    Google Scholar 

  • Putman, S. (1983). "Integrated Urban Models: Policy analysis of transportation and land use." Pion, London, United Kingdom.

    Google Scholar 

  • Reinsel, G. C. (1993). Elements of Multivariate Time Series Analysis, Springer-Verlag, New York, New York.

    MATH  Google Scholar 

  • Ripley, B. D. (1988). Statistical Inference for Spatial Processes, Cambridge University Press, Cambridge, United Kingdom.

    Google Scholar 

  • Robinson, J. N. (1987). "Identification of spatial-temporal models of remote-sensing data." Doctoral dissertation, University of Texas, Austin, Texas.

    Google Scholar 

  • Sachs, L. (1984). Applied Statistics—A Handbook of Techniques, Springer-Verlag, New York, New York.

    MATH  Google Scholar 

  • Saavedra, L. A. (2003). “Tests for spatial lag dependence based on method of moments estimation.” Regional Science & Urban Economics, Vol. 33, pp. 27–58.

    Article  Google Scholar 

  • Schewchuk, J. (1996). "Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator." Technical report, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania. (Also available at http://www.cs.cmu.edu/~quake/triangle.research.html)

    Google Scholar 

  • Schurmann, J. (1996). Pattern classification: a unified view of statistical and neural approaches, Wiley-Interscience, New York, New York.

    Google Scholar 

  • Sen, A.; Smith, T. E. (1995). Gravity Models of Spatial Interaction Behavior, Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Sharma, S. (1996). Applied Multivariate Techniques, Wiley, New York, New York.

    Google Scholar 

  • Sharma, S. (2003). “Persistence and stability in city growth.” Urban Economics, Vol. 53, pp. 300–320.

    Article  Google Scholar 

  • Sik, K. D.; Woo, C. H. (1999). "A spatial location-allocation model for rural center villages in Republic of Korea." Working paper, Institute of Agricultural Development, College of Agriculture & Life Sciences, Seoul National University, Republic of Korea.

    Google Scholar 

  • Smetek, T.; Chan, Y. (1997). "Solving a multi-facility location problem using Voronoi diagrams and linear programming." Working paper, Department of Operational Sciences, Air Force Institute of Technology, Wright-Patterson AFB, Ohio.

    Google Scholar 

  • Solna, K.; Switzer, P. (1996). "Time trend estimation for a geographic region." Journal of the American Statistical Association, Vol. 91, pp. 577–589.

    MathSciNet  Google Scholar 

  • Storer, J. (1994). "Shortest path in the plane with polygonal obstacles." Journal of the Association ofComputing Machinery, Vol. 41, No. 5, pp. 982–1012.

    MATH  MathSciNet  Google Scholar 

  • Stoyan, D.; Stoyan, H. (1994). Fractals, Random Shapes and Point Fields, Wiley, New York, New York.

    MATH  Google Scholar 

  • Sugihara, K. (1993). "Approximation of generalized Voronoi diagrams by ordinary Voronoi diagrams." Graphical Models and Image Processing, Vol. 55, pp. 522–531.

    Article  Google Scholar 

  • Sugihara, K. (1997). "Experimental study on acceleration of an exact-arithmetic geometric algorithm." Proceedings of the 1997 International Conference on Shape Modeling and Applications, pp. 160–168.

    Google Scholar 

  • Sugihara, K.; Iri, M. (1994). "A robust topology-oriented incremental algorithm for Voronoi diagrams." International Journal of Computational Geometry & Applications, Vol. 4, No. 2, pp. 179–228.

    Article  MathSciNet  MATH  Google Scholar 

  • Suzuki, A.; Okabe, A. (1995). "Using Voronoi Diagrams." in Facility Location—A Survey of Applications and Methods (Z. Drezner, Editor), Springer-Verlag, New York, New York.

    Google Scholar 

  • Suzuki, A. (1989). "On the average complexity of the incremental algorithm for the Voronoi diagrams." Working paper, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois.

    Google Scholar 

  • Srinivasan, S. (2001). “Quantifying spatial characteristics for travel behavior models.” Transportation Research Record, No. 1777, pp. 1–15.

    Google Scholar 

  • Takeda, S. (1985). "On geographical optimization dynamic facility location problem." Master's Thesis, Department of Mathematical Engineering and Information Physics, University of Tokyo [in Japanese].

    Google Scholar 

  • Tobler, W. R. (1970). "A computer movie simulating urban growth in the Detroit region." Economic Geography, Vol. 46.

    Google Scholar 

  • Tobler, W. (1983). "An alternative formulation for spatial-interaction modelling." Environment and Planning A, Vol. 15, pp. 693–703.

    Google Scholar 

  • Tobler, W. (1988). "The quadratic transportation problem as a model of spatial interaction patterns." in Geographical Systems and Systems of Geography: Essays in Honor of William Warntz (W. J. Coffey, Editor), Department of Geography. University of Western Ontario, London Ontario, pp. 75–88.

    Google Scholar 

  • Upton, G. J. G.; Fingleton, B. (1985). Spatial Data Analysis by Example — Volume I: Point Pattern and Quantitative Data, Wiley.

    Google Scholar 

  • Wackernagel, H. (2003). Multivariate Geostatistics. Springer-Verlag, Heidelberg, Germany.

    MATH  Google Scholar 

  • Wright, S. (1995). "Spatial Time-Series: Pollution Pattern Recognition Under Irregular Intervention." Masters Thesis, Dept. of Operational Sciences, Air Force institute of Technology, Wright-Patterson AFB, Ohio.

    Google Scholar 

  • Xu, W.; Chan, Y. (1993a). "Estimating an origin-destination matrix with fuzzy weights — Part I: Methodology." Transportation Planning and Technology, Vol. 17, pp. 127–144.

    Google Scholar 

  • Xu, W.; Chan, Y. (1993b). "Estimating an origin-destination matrix with fuzzy weights — Part II: Case studies." Transportation Planning and Technology, Vol. 17, pp. 145–163.

    Google Scholar 

  • Yi, P.; Chan, Y. (1988). "Bifurcation and disaggregation in Lowry-Garin based models: theory, calibration and case study." Environment and Planning A, Vol. 20, pp. 1253–1267, Pion, London, United Kingdom.

    Google Scholar 

  • Zimmerman, P. (1988). "Photos from space-why restrictions won't work." Technology Review, May–June, Massachusetts Institute of Technology, pp. 45–53.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Spatial-Temporal Information: Statistical and Causal-Model Development. In: Location, Transport and Land-Use. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26851-0_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-26851-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21087-0

  • Online ISBN: 978-3-540-26851-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics