Skip to main content

T-Cell Therapies for EBV-Associated Malignancies

  • Conference paper
Regenerative and Cell Therapy

Part of the book series: Ernst Schering Research Foundation Workshop ((3368,volume 11))

  • 474 Accesses

8.6 Conclusion

At present, CTL are being used only in patients with advanced relapsed malignancies. As their safety and efficacy becomes better established we may expect their introduction earlier in the course of therapy where they may reduce the short- and long-term toxicities of standard radio- and chemotherapies. Further understanding of the ways in which immune evasion strategies can be counteracted in Hodgkin’s disease may also be applied to the many other human tumors that are potentially immunogenic and use similar immune evasion strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson R, Macdonald I, Corbett T, Hacking G, Lowdell MW, Prentice HG (1997) Construction and biological characterization of an interleukin-12 fusion protein (Flexi-12): delivery to acute myeloid leukemic blasts using adeno-associated virus. Hum Gene Ther 8:1125–1135

    PubMed  CAS  Google Scholar 

  • Bollard CM, Rossig C, Calonge MJ, et al. (2002) Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood 99:3179–3187

    Article  PubMed  CAS  Google Scholar 

  • Gahn B, Siller-Lopez F, Pirooz AD, et al. (2001) Adenoviral gene transfer into dendritic cells efficiently amplifies the immune response to the LMP2A-antigen: a potential treatment strategy for Epstein-Barr virus-positive Hodgkin’s lymphoma. Int J Cancer 93:706–713

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk S, Heslop HE, Rooney CM (2002) Treatment of Epstein-Barr virus-associated malignancies with specific T cells. Adv Cancer Res 84:175–201

    Article  PubMed  CAS  Google Scholar 

  • Herbst H, Dallenback F, Hummel M, et al. (1991) Epstein-Barr virus latent membrane protein expression in Hodgkin and Reed-Sternberg cells. Proc Natl Acad Sci 88:4766–4770

    Article  PubMed  CAS  Google Scholar 

  • Heslop H, Rooney C, Brenner M, et al. (2000) Administration of neomycin resistance gene-marked EBV-specific cytotoxic T-lymphocytes as therapy for patients receiving a bone marrow transplant for relapsed EBV-positive Hodgkin’s disease. Hum Gene Ther 11:1465–1475

    Article  PubMed  CAS  Google Scholar 

  • Heslop HE, Ng CYC, Li C, et al. (1996) Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med 2:551–555

    Article  PubMed  CAS  Google Scholar 

  • Hsu SM, Lin J, Xie SS, Hsu PL, Rich S (1993) Abundant expression of transforming growth factor-beta 1 and-beta 2 by Hodgkin’s Reed-Sternberg cells and by reactive T lymphocytes in Hodgkin’s disease. Hum Pathol 24:249–255

    Article  PubMed  CAS  Google Scholar 

  • Lenardo M, Chan KM, Hornung F, et al. (1999) Mature T lymphocyte apoptosis-immune regulation in a dynamic and unpredictable antigenic environment. Annu Rev Immunol 17:221–253

    Article  PubMed  CAS  Google Scholar 

  • Leonard JP, Sherman ML, Fisher GL, Buchanan LJ, Larsen G, Atkins MB, Sosman JA, Dutcher JP, Vogelzang NJ, Ryan JL (1997) Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 90(7):2541–2548

    PubMed  CAS  Google Scholar 

  • Levitskaya J, Coram M, Levitsky V, et al. (1995) Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375:685–688

    Article  PubMed  CAS  Google Scholar 

  • Lucey DR, Clerici M, Shearer GM (1996) Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clin Microbiol Rev 9(4):532–562

    PubMed  CAS  Google Scholar 

  • Poppema S, Potters M, Visser L, van den Berg AM (1998) Immune escape mechanisms in Hodgkin’s disease. Ann Oncol 9(Suppl 5):S21–S24

    Article  PubMed  Google Scholar 

  • Rickinson AB (1994) EBV infection and EBV-associated tumors. In: Minson AC, Neil JC, McRae MA (eds) Viruses and cancer. Cambridge University Press, Cambridge, pp 81–100

    Google Scholar 

  • Rooney CM, Smith CA, Ng CYC, et al. (1995) Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr virus-related lymphoproliferation. Lancet 345:9–13

    Article  PubMed  CAS  Google Scholar 

  • Rooney CM, Smith CA, Ng CYC, et al. (1998) Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92:1549–1555

    PubMed  CAS  Google Scholar 

  • Roskrow MA, Rooney CM, Heslop HE, et al. (1998 a) Administration of neomycin resistance gene marked EBV-specific cytotoxic T-lymphocytes to patients with relapsed EBV-positive Hodgkin’s disease. Hum Gene Ther 9:1237–1250

    PubMed  CAS  Google Scholar 

  • Roskrow MA, Suzuki N, Gan Y-J, et al. (1998b) EBV-specific cytotoxic T lymphocytes for the treatment of patients with EBV positive relapsed Hodgkin’s disease. Blood 91:2925–2934

    PubMed  CAS  Google Scholar 

  • Skinnider BF, Mak TW (2002) The role of cytokines in classical Hodgkin lymphoma. Blood 99:4283–4297

    Article  PubMed  CAS  Google Scholar 

  • Smith CA, Ng CYC, Heslop HE, et al. (1995) Production of genetically modified EBV-specific cytotoxic T cells for adoptive transfer to patients at high risk of EBV-associated lymphoproliferative disease. J Hematother 4:73–79

    PubMed  CAS  Google Scholar 

  • Voest EE, Kenyon BM, O’Reilly MS, Truitt G, D’Amato RJ, Folkman J (1995) Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst 87(8):581–586

    PubMed  CAS  Google Scholar 

  • Wieser R, Attisano L, Wrana JL, Massague J (1993) Signaling activity of transforming growth factor beta type II receptors lacking specific domains in the cytoplasmic region. Mol Cell Biol 13:7239–7247

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brenner, M.K., Bollard, C., Huls, M.H., Gottschalk, S., Heslop, H.E., Rooney, C.M. (2005). T-Cell Therapies for EBV-Associated Malignancies. In: Keating, A., Dicke, K., Gorin, N., Weber, R., Graf, H. (eds) Regenerative and Cell Therapy. Ernst Schering Research Foundation Workshop, vol 11. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-26843-X_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-26843-X_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22093-0

  • Online ISBN: 978-3-540-26843-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics