Skip to main content

Problems and Hopes with Cell Therapy: The Case of Muscular Dystrophy

  • Conference paper
Regenerative and Cell Therapy

Part of the book series: Ernst Schering Research Foundation Workshop ((3368,volume 11))

  • 487 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  • Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    PubMed  CAS  Google Scholar 

  • Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA (2002) Myogenic specification of side population cells in skeletal muscle. J Cell Biol 159:123–134

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp JR, Morgan JE, Pagel CN, Partridge TA (1999) Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 144:1113–1121

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151:1221–1234

    Article  PubMed  CAS  Google Scholar 

  • Berghella L, De Angelis L, Coletta M, Berarducci B, Sonnino C, Salvatori G, Anthonissen C, Cooper R, Butler-Browne GS, Mouly V, Ferrari G, Mavilio F, Cossu G (1999) Reversible immortalization of human myogenic cells by site-specific excision of a retrovirally-transferred onco-gene. Hum Gene Ther 10:1607–1618

    Article  PubMed  CAS  Google Scholar 

  • Bianco P, Cossu G (1999) Uno nessuno e centomila. Searching for the identity of mesodermal progenitors. Exptl Cell Res 251:257–263

    Article  PubMed  CAS  Google Scholar 

  • Bischoff R (1994) The satellite cell and muscle regeneration. In: Engel AG, Franzini-Armstrong C (eds) Myology, 2nd edn. McGraw-Hill, New York, pp 97–133

    Google Scholar 

  • Blake DJ, Weir A, Newey SE, Davies KE (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82:291–329

    PubMed  CAS  Google Scholar 

  • Burton EA, Davies KE (2002) Muscular dystrophy — reason for optimism? Cell 108:5–8

    Article  PubMed  CAS  Google Scholar 

  • Cao B, Zheng B, Jankowski RJ, Kimura S, Ikezawa M, Deasy B, Cummins J, Epperly M, Qu-Petersen Z, Huard J (2003) Muscle stem cells differentiate into hematopoietic lineages but retain myogenic potential. Nat Cell Biol (in press)

    Google Scholar 

  • Cossu G, Clemens P (2001) Gene and cell therapy for muscular dystrophies. In: Emery AH (ed) Muscular dystrophy. Oxford University Press, Oxford, pp 261–283

    Google Scholar 

  • Cossu G, Mavilio F (2000) Myogenic stem cells for the therapy of primary myopathies: wishful thinking or therapeutic perspective? J Clin Invest 105:1669–1674

    PubMed  CAS  Google Scholar 

  • Daley GQ (2002) Prospects for stem cell therapeutics: myths and medicines. Curr Opin Genet Dev 12:607–613

    Article  PubMed  CAS  Google Scholar 

  • De Angelis L, Berghella L, Coletta M, Gabriella Cusella De Angelis M, Lattanzi L, Ponzetto C, Cossu G (1999) Skeletal myogenic progenitors originating from embryonic dorsal aorta co-express endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol 147:869–878

    Article  PubMed  Google Scholar 

  • De Angelis FG, Sthandier O, Berarducci B, Toso S, Galluzzi G, Ricci E, Cossu G, Bozzoni I (2002) Chimeric snRNA molecules carrying anti-sense sequences against the splice junctions of exon 51 of the dystrophin pre-mRNA induce exon skipping and restoration of a dystrophin synthesis in Delta 48–50 DMD cells. Proc Natl Acad Sci 99:9456–9461

    Article  PubMed  CAS  Google Scholar 

  • De Bari C, Dell’Accio F, Vandenabeele F, Vermeesch JR, Raymackers JM, Luyten FP (2003) Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol 160:909–918

    Article  PubMed  CAS  Google Scholar 

  • Decary S, Mouly V, Hamida CB, Sautet A, Barbet JP, Butler-Browne GS (1997) Replicative potential and telomere length in human skeletal muscle: implications for myogenic cell-mediated gene therapy. Hum Gene Ther 8:1429–1438

    PubMed  CAS  Google Scholar 

  • Deconinck N, Tinsley J, De Backer F, Fisher R, Kahn D, Phelps S, Davies K, Gillis JM (1997) Expression of truncated utrophin leads to major functional improvements in dystrophen-deficient muscles of mice. Nat Med 3:1216–1221

    Article  PubMed  CAS  Google Scholar 

  • Duclos F, Straub V, Moore SA, Venzke DP, Hrstka RF, Crosbie RH, Durbeej M, Lebakken CS, Ettinger AJ, van der Meulen J, Holt KH, Lim LE, Sanes JR, Davidson BL, Faulkner JA, Williamson R, Campbell KP (1998) Progressive muscular dystrophy in alpha-sarcoglycan-deficient mice. J Cell Biol 142:1461–1471

    Article  PubMed  CAS  Google Scholar 

  • Emery AE (2002) The muscular dystrophies. Lancet 317:991–995

    Google Scholar 

  • Ferrari G, Mavilio F (2002) Myogenic stem cells from the bone marrow: a therapeutic alternative for muscular dystrophy? Neuromuscul Disord 12:S7–S10

    Article  PubMed  Google Scholar 

  • Ferrari G, Cusella De Angelis MG, Coletta M, Stornaioulo A, Paolucci E, Cossu G, Mavilio F (1998) Skeletal muscle regeneration by bone marrow derived myogenic progenitors. Science 279:1528–1530

    Article  PubMed  CAS  Google Scholar 

  • Ferrari G, Stornaioulo A, Mavilio F (2001) Failure to correct murine muscular dystrophy. Nature 411:1014–1015

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390

    PubMed  CAS  Google Scholar 

  • Galli R, Borello U, Gritti A, Giulia Minasi MG, Bjornson C, Coletta M, Mora M, Cusella De Angelis MG, Fiocco R, Cossu G, Vescovi AL (2000) Skeletal myogenic potential of adult neural stem cells. Nat Neurosci 3:986–991

    Article  PubMed  CAS  Google Scholar 

  • Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    Article  PubMed  CAS  Google Scholar 

  • Grounds MD (1999) Muscle regeneration: molecular aspects and therapeutic implications. Curr Opin Neurol 12:535–543

    Article  PubMed  CAS  Google Scholar 

  • Guerette BD, Skuk F, Celestin JC, Huard F, Tardif I, Asselin B, Roy M, Goulet R, Roy R, Entman M, Tremblay JP (1997) Prevention by anti-LFA-1 of acute myoblast death following transplantation. J Immunol 159:2522–2531

    PubMed  CAS  Google Scholar 

  • Gussoni E, Blau HM, Kunkel LM (1997) The fate of individual myoblasts after transplantation into muscles of DMD patients. Nat Med 3:970–977

    Article  PubMed  CAS  Google Scholar 

  • Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394

    PubMed  CAS  Google Scholar 

  • Gussoni E, Bennett RR, Muskiewicz KR, Meyerrose T, Nolta JA, Gilgoff I, Stein J, Chan Y, Lidov HG, Bönnemann CG, von Moers A, Morris GE, den Dunnen JT, Chamberlain JS, Kunkel LM, Weinberg K (2002) Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. J Clin Invest 110:807–814

    Article  PubMed  CAS  Google Scholar 

  • Harper SQ, Hauser MA, DelloRusso C, Duan D, Crawford RW, Phelps ST, Harper HA, Robinson AS, Engelhardt JF, Brooks SV, Chamberlain JS (2002) Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat Med 8:253–261

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM (2002a) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30:896–904

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002b) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  PubMed  CAS  Google Scholar 

  • Kardon G, Campbell JK, Tabin CJ (2002) Local extrinsic signals determine muscle and endothelial cell fate and patterning in the vertebrate limb. Dev Cell 3:533–545

    Article  PubMed  CAS  Google Scholar 

  • Kelly R, Alonso S, Tajbakhsh S, Cossu G, Buckingham M (1995) Myosin light chain 3f regulatory sequences confer regionalized cardiac and skeletal muscle expression in transgenic mice. J Cell Biol 129:383–396

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita I, Roy R, Dugre FJ, Gravel C, Goulet M, Asselin I, Tremblay JP (1996) Myoblast transplantation in monkeys: control of immune response by FK506. J Neuropathol Exp Neurol 55:687–697

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita I, Vilquin LT, Guerette B, Asselin I, Roy R, Tremblay JP (1994) Very efficient myoblast allotransplantation in mice under Fk-506 immu-nosuppression. Muscle Nerve 17:1407–1415

    Article  PubMed  CAS  Google Scholar 

  • LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111:589–601

    Article  PubMed  CAS  Google Scholar 

  • Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M (2000) Purified hemato-poietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234

    Article  PubMed  CAS  Google Scholar 

  • Lattanzi L, Salvatori G, Coletta M, Sonnino C, Cusella De Angelis MG, Gioglio L, Murry CE, Kelly R, Ferrari G, Molinaro M, Crescenzi M, Mavilio F, Cossu G (1998) High efficiency myogenic conversion of human fibroblasts by adenoviral vector-mediated MyoD gene transfer. An alternative strategy for ex vivo gene therapy of primary myopathies. J Clin Invest 101:2119–2128

    Article  PubMed  CAS  Google Scholar 

  • Liechty KW, Mackenzie TC, Shaaban AF, Radu A, Moseley AB, Deans R, Marshak DR, Flakel AW (2000) Human mesenchymal stem cells engraft and demonstrate site specific differentiation after in utero transplantation in sheep. Nat Med 6:1282–1286

    Article  PubMed  CAS  Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  PubMed  CAS  Google Scholar 

  • McKinney-Freeman SL, Jackson KA, Camargo FD, Ferrari G, Mavilio F, Goodell MA (2002) Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci 99(3):1341–1346

    Article  PubMed  CAS  Google Scholar 

  • Minasi MG, Riminucci M, De Angelis L, Borello U, Berarducci B, Innocenzi A, Caprioli A, Sirabella D, Baiocchi M, De Maria R, Jaffredo T, Broccoli V, Bianco P, Cossu G (2002) The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 129:2773–2783

    PubMed  CAS  Google Scholar 

  • Nishino I, Ozawa E (2002) Muscular dystrophies. Curr Opin Neurol 15:539–544

    Article  PubMed  Google Scholar 

  • Partridge TA (1996) Myoblast transplantation. In: Lanza RP, Chick WL (eds) Yearbook of cell and tissue transplantation 1996/1997. Kluwer, Netherlands, pp 53–59

    Google Scholar 

  • Partridge TA, Beauchamp JR, Morgan JE (1989) Conversion of mdx myofibres from dystrophen-negative to-positive by injection of normal myoblasts. Nature 337:176–179

    Article  PubMed  CAS  Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stem cells for non-hematopoietic tissues. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  • Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R, Mytinger J, Cao B, Gates B, Wernig A, Huard J (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157:851–864

    Article  PubMed  CAS  Google Scholar 

  • Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615–2625

    Article  PubMed  CAS  Google Scholar 

  • Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D’Antona G, Pelle-grino MA, Barresi R, Bresolin N, Cusella De Angelis MG, Campbell KP, Bottinelli R, Cossu G (2003) Cell therapy of alpha sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301(5632):487–492

    Article  PubMed  CAS  Google Scholar 

  • Seale P, Asakura A, Rudnicki MA (2001) The potential of muscle stem cells. Dev Cell 1:333–342

    Article  PubMed  CAS  Google Scholar 

  • Skuka D, Vilquin JT, Tremblay JP (2002) Experimental and therapeutic approaches to muscular dystrophies. Curr Opin Neurol 15:563–569

    Article  Google Scholar 

  • Tamaki T, Akatsuka A, Ando K, Nakamura Y, Matsuzawa H, Hotta T, Roy RR, Edgerton VR (2002) Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J Cell Biol 157:571–577

    Article  PubMed  CAS  Google Scholar 

  • Torrente Y. Belicchi A, Sampaolesi M, Pisati F, Lestingi M, D’Antona G, Tonlorenzi R, Porretti L, Gavina M, Mamchaoui K, Pellegrino MA, Furling D, Mouly V, Butler-Browne GS, Bottinelli R, Cossu G, Bresolin N (2004) Human circulating AC133+ stem cells replenish the satellite cell pool, resore dystrophin expression and ameliorate function upon transplantation in murine dystrophic skeletal muscle. J Clin Invest (in press)

    Google Scholar 

  • Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cossu, G. (2005). Problems and Hopes with Cell Therapy: The Case of Muscular Dystrophy. In: Keating, A., Dicke, K., Gorin, N., Weber, R., Graf, H. (eds) Regenerative and Cell Therapy. Ernst Schering Research Foundation Workshop, vol 11. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-26843-X_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-26843-X_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22093-0

  • Online ISBN: 978-3-540-26843-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics