Skip to main content

How accurately can we predict nucleate boiling?

  • Chapter
Multiphase Flow Dynamics 2
  • 1238 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arefeva EI and Aladev IT (July 1958) O wlijanii smatchivaemosti na teploobmen pri kipenii, Injenerno-Fizitcheskij Jurnal, in Russian, vol 1 no 7 pp 11–17

    Google Scholar 

  2. Avdeev AA, Maidanik VN, Selesnev LI and Shanin VK (1977) Calculation of the critical flow rate with saturated and subcooled water flushing through a cylindrical duct, Teploenergetika, vol 24 no 4 pp 36–38

    Google Scholar 

  3. Borishanskii, V, Bobrovich G, Minchenko F (1961) Heat transfer from a tube to water and to ethanol in nucleate pool boiling, Symposium of Heat Transfer and Hydraulics in Two-Phase Media, Kutateladze SS (ed) Gosenergoizdat, Moscow, pp 75–93

    Google Scholar 

  4. Brauer H (1971) Stoffaustausch, Verlag Sauerländer

    Google Scholar 

  5. Chen JC (July 1966) Correlation for boiling heat transfer to saturated fluids in convective flow, Ind. & Eng. Chem. Progress Design and Development, vol 5 no 3 pp 322–329

    Google Scholar 

  6. Cole R, Rohsenow WM (1969) Correlation of bubble departure diameters for boiling of saturated liquids, Chem. Eng. Prog. Symp. Ser., no 92 vol 65 pp 211–213

    Google Scholar 

  7. Cornwell K, Brown RD (1978) Boiling surface topology, Proc. 6th Int. Heat Transfer Conf. Heat Transfer 1978-Toronto, vol 1 pp 157–161

    Google Scholar 

  8. Faggiani S, Galbiati P and Grassi W (1981) Active site density, bubble frequency and departure on chemically etched surfaces, La Termotechnica, vol 29 no 10 pp 511–519

    Google Scholar 

  9. Forster HK, Zuber N (1955) Dynamics of vapor bubbles and boiling heat transfer, AIChE J., vol 1 no 4 pp 531–535

    Article  Google Scholar 

  10. Fritz W (1935) Berechnung des maximalen Volumens von Dampfblasen, Phys. Z., vol 36 no 11 pp 379–384

    Google Scholar 

  11. Gaertner RF, Westwater JW (1960) Population of active sites in nucleate boiling heat transfer, Chem. Eng. Progr. Symp. Ser., no 30 vol 30 pp 39–48

    Google Scholar 

  12. Gaertner RF (1963) Distribution of active sites in the nucleate boiling of liquids, Chem. Eng. Prog. Symp. Series, no 41 vol 59 pp 52–61

    Google Scholar 

  13. Gaertner RF (Feb. 1965) Photographic study of nucleate pool boiling on a horizontal surface, Transaction of the ASME, Journal of Heat Transfer, vol 87 pp 17–29

    Google Scholar 

  14. Han CY, Griffith P (1965) The mechanism of heat transfer in nucleate pool boiling, Part 1, Bubble initiation, growth and departure, Int. J. Heat Mass Transfer, vol 8 pp 887–904

    Article  Google Scholar 

  15. Hutcherson MN, Henry RE and Wollersheim DE (Nov. 1983) Two-phase vessel blowdown of an initially saturated liquid-Part 2: Analytical, Trans. ASME, J. Heat Transfer, vol 105 pp 694–699

    Google Scholar 

  16. Jakob M and Fritz W (1931) Versuche ueber den Verdampfungsvorgang, Forsch. Ing.-Wes., vol 2 p 435

    Google Scholar 

  17. Jakob M (1932) Kondensation und Verdampfung, Zeitschrift des Vereins Deutscher Ingenieure, vol 76 no 48 pp 1161–1170

    Google Scholar 

  18. Jakob M and Linke W (1933) Der Wärmeübergang von einer waagerechten Platte an siedendes Wasser, Forsch. Ing. Wes., vol 4 pp 75–81

    Google Scholar 

  19. Jakob M (1949) Heat transfer, Wiley, New York, vol 1 ch 29

    Google Scholar 

  20. Jens WH and Lottes PA (1951) Analysis of heat transfer, burnout, pressure data and density data for high pressure water. USAEC Rep. ANL-4627

    Google Scholar 

  21. Johov KA (1969) Nucleations number during steam production, Aerodynamics and Heat Transfer in the Working Elements of the Power Facilities, Proc. CKTI, Leningrad, in Russian, vol 91 pp 131–135

    Google Scholar 

  22. Jones OC (1992) Nonequilibrium phase change-1. Flashing inception, critical flow, and void development in ducts, in boiling heat transfer, Lahey RT Jr (ed) Elsevier Science Publishers B.V., pp 189–234

    Google Scholar 

  23. Jones OC (1992) Nonequilibrium phase change-2. Relaxation models, general applications, and post heat transfer, Lahey RT Jr (ed) Boiling Heat Transfer, Elsevier Science Publishers B.V., pp 447–482

    Google Scholar 

  24. Judd RL, Hwang KS (Nov. 1976) A comprehensive model for nucleate pool boiling heat transfer including microlayer evaporation, Transaction of the ASME, Journal of Heat Transfer, vol 98 pp 623–629

    Google Scholar 

  25. Kolev NI (1994) The influence of mutual bubble interaction on the bubble departure diameter, Experimental Thermal and Fluid Science, vol 8 pp 167–174

    Article  Google Scholar 

  26. Kolev NI (1995) How accurate can we predict nucleate boiling, Experimental Thermal and Fluid Science, Experimental Thermal and Fluid Science, vol 10 pp 370–378

    Article  Google Scholar 

  27. Kocamustafaogullari G and Ishii M (1983) Interfacial area and nucleation site density in boiling systems, Int. J. Heat Mass Transfer, vol 26 pp 1377–1389

    Google Scholar 

  28. Kutateladse SS (1954) A hydrodynamic theory of changes in the boiling process under free convection conditions, Izv. Akad. Nauk SSSR, Otd. Tech. Nauk, vol 4 pp 529–536, 1951; AEC-tr-1991

    Google Scholar 

  29. Kutateladse SS (1962) Basics on heat transfer theory, in Russian, Moscow, Mashgis, p 456

    Google Scholar 

  30. Kurihara HM, Myers JE (March 1960) The effect of superheat and surface roughness on boiling coefficients, AIChE Journal, vol 6 no 1 pp 83–91

    Article  Google Scholar 

  31. Labuntsov DA (1974) State of the art of the nucleate boiling mechanism of liquids, Heat Transfer and Physical Hydrodynamics, Moskva, Nauka, in Russian, pp 98–115

    Google Scholar 

  32. Labuntsov DA (1963) Approximate theory of heat transfer by developed nucleate boiling (Russ.), Izvestiya AN SSSR, Energetika i transport no 1

    Google Scholar 

  33. Miheev MA and Miheeva IM (1973) Basics of heat transfer, Moskva, Energija, in Russian, p 320

    Google Scholar 

  34. Mikic BB, Rohsenow WM (May 1969) A new correlation of pool-boiling data including the effect of heating surface characteristics, Transactions of the ASME, J. Heat Transfer, vol 91 pp 245–250

    Google Scholar 

  35. Nishikawa K, Fujita Y, Uchida S, Ohta H (1984) Effect of surface configuration on nucleate boiling heat transfer, Int. J. Heat and Mass Transfer, vol 27 no 9 pp 1559–1571

    Article  Google Scholar 

  36. Pohlhausen K (1921) Zur nährungsweisen Integration der Differentialgleichung der laminaren Grenzschicht, Z. angew. Math. Mech., vol 1 pp 252–268

    Google Scholar 

  37. Rallis CJ, Jawurek HH (1964) Latent heat transport in saturated nucleate boiling, Int. J. Heat Transfer, vol 7 pp 1051–1068

    Article  Google Scholar 

  38. Riznic J and Ishii M (1989) Bubble number density and vapor generation in flushing flow, Int. J. Heat Mass Transfer, vol 32 pp 1821–1833

    Article  Google Scholar 

  39. Rohsenow WM (1952) A method of correlating heat transfer data for surface boiling of liquids, Trans. ASME, vol 74 pp 969–975

    Google Scholar 

  40. Siegel R and Keshock EG (July 1964) Effects of reduced gravity on nucleate boiling bubble dynamics in saturated water, AIChE Journal, vol 10 no 4 pp 509–517

    Article  Google Scholar 

  41. Sultan M, Judd RL (Feb. 1978) Spatial distribution of active sites and bubble flux density, Transactions of the ASME, Journal of Heat Transfer, vol 100, pp 56–62

    Google Scholar 

  42. Thom IRS et. al. (1966) Boiling in subcooled water during up heated tubes or annuli. Proc. Instr. Mech. Engs., vol 180 3C pp 1965–1966

    Google Scholar 

  43. Tolubinsky VI, Ostrovsky JN (1966) On the mechanism of boiling heat transfer (vapor bubbles growth rate in the process of boiling in liquids, solutions, and binary mixtures), Int. J. Heat Mass Transfer, vol 9 pp 1463–1470

    Article  Google Scholar 

  44. Vachon RI, Tanger GE, Davis DL, Nix GH (May 1968) Pool boiling on polished chemically etched stainless-steel surfaces, Transactions of ASME, Journal of Heat Transfer, vol 90 pp 231–238

    Google Scholar 

  45. Vachon RI, Nix GH, Tanger GH (May 1968) Evalution of the constants for the Rohsenow pool-boiling correlation, Transactions of the ASME Journal of Heat Transfer, vol 90 pp 239–247

    Google Scholar 

  46. van Stralen S, Cole R (1979) Boiling Phenomena, Hemisphere, USA

    Google Scholar 

  47. von Karman T (1921) Über laminare und turbulente Reibung, Z. angew. Math. Mech., vol 1 pp 233–252

    Google Scholar 

  48. Wang CH, Dhir VK (Aug. 1993) Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface, ASME Journal of Heat Transfer, vol 115 pp 659–669

    Google Scholar 

  49. Wiebe JR (1970) Temperature profiles in subcooled nucleate boiling, M. Eng. thesis, Mechanical Engineering Department, McMaster University, Canada

    Google Scholar 

  50. Yamagata K, Hirano F, Nishikawa K, Matsuoka H (1955) Nucleate boiling of water on the horizontal heating Surface, Mem. Fac. Engng; Kyushu Univ, vol 15 p 97

    Google Scholar 

  51. Yang JK, Weisman J (1991) A phenomenological model of subcooled flow boiling in the detached bubble region, Int. J. Multiphase Flow, vol 17 no 1 pp 77 94

    Article  Google Scholar 

  52. Zuber N (April 1958) On the stability of boiling heat transfer, Transactions of the ASME, vol 80 pp 711–720

    Google Scholar 

  53. Zuber N and M Tribus (1958) Further remarks on the stability of boiling heat transfer, report 58-5, Department of Engineering, University of California, Los Angeles

    Google Scholar 

  54. Zuber N (1959) Hydrodynamic aspect of boiling heat transfer, U.S. Atomic Energy Commission Rept., AECU-4439, Tech. Inf. Serv. Oak Ridge, Tenn

    Google Scholar 

  55. Zuber N (Jan. 1960) Hydrodynamic aspect of nucleate pool boiling, Part I-The region of isolated bubbles, Research Laboratory Ramo-Wooldridge, RW-RL-164, 27

    Google Scholar 

  56. Zuber N, Tribus M and Westwater JW (1961) The hydrodynamic crisis in pool boiling of saturated and subcooled liquids, International Developments in Heat Transfer, Proc. Int. Heat Transfer Conf., Boulder, Colorado, Part 2, no 27 pp 230–236

    Google Scholar 

  57. Zuber N (1963) Nucleate boiling, The region of isolated bubbles and the similarity with natural convection, Int. J. Heat Mass Transfer, vol 6 pp 53–78

    Article  Google Scholar 

  58. Borishanskii V, Kozyrev A and Svetlova L (1964) Heat transfer in the boiling water in a wide range of saturation pressure, High Temperature, vol 2 no 1 pp 119–121

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). How accurately can we predict nucleate boiling?. In: Multiphase Flow Dynamics 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26830-8_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-26830-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22107-4

  • Online ISBN: 978-3-540-26830-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics