Skip to main content

Testing of Closure Assumption for Fully Developed Turbulent Channel Flow with the Aid of a Lattice Boltzmann Simulation

  • Conference paper
High Performance Computing in Science and Engineering, Munich 2004
  • 556 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Bhatnagar, E. P. Gross, and M. K. Krook. A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems. Phys. Rev., 94(3):511–525, 1954.

    Article  Google Scholar 

  2. J. Buick and C. Greated. Gravity in lattice Boltzmann model. Phys. Rev. E, 61(6):5307–5320, 2000.

    Article  Google Scholar 

  3. S. Chapman and T. G. Cowling. The Mathematical Theory of Non-Uniform Gases. University Press, Cambridge, 1999.

    Google Scholar 

  4. S. Chen and G. D. Doolen. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech., 30:329–364, 1998.

    Article  MathSciNet  Google Scholar 

  5. P. Y. Chou. On the velocity correlation and the solution of the equation of turbulent fluctuation. Q. Appl. Maths., 3:38–54, 1945.

    MATH  Google Scholar 

  6. S. C. Crow. Viscoelastic properties of fine-grained incompressible turbulence. J. Fluid Mech., 33:1–12, 1968.

    Article  MATH  Google Scholar 

  7. D.C. Wilcox. Turbulence modelling for CFD. DCW Industries, Inc., La Cañada, California, 1998.

    Google Scholar 

  8. X. He and L.-S. Luo. Lattice Boltzmann model for the incompressible Navier-Stokes equation. J. Stat. Phys., 88(3/4):927–944, 1997.

    Article  MathSciNet  Google Scholar 

  9. J. O. Hinze. Turbulence. McGraw-Hill, New York, 2. edition, 1975.

    Google Scholar 

  10. J. Jonanovic. Konwihr-Vorlesung: Turbulenz und Turbulenzmodellierung II. Vorlesungsmitschrift, Lehrstuhl für Strömungsmechanik, Universität Erlangen-Nürnberg, 2002.

    Google Scholar 

  11. J. Jovanović and I. Otić. On the constitutive relation for the reynolds stresses and the prandtl-kolmogorov hypothesis of effective viscosity in axisymmetric strained turbulence. Transactions of ASME Journal of Fluids Engineering, 122:48–50, 2000.

    Google Scholar 

  12. J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech., 177, 1987.

    Google Scholar 

  13. A. N. Kolmogorov. Equations of motion of an incommpressible turbulent fluid. Izvestiya Akad Nauk SSSR, Ser. Phys, 6:56–58, 1942.

    Google Scholar 

  14. B. A. Kolovandin and I. A. Vatutin. Statistical transfer theory in nonhomogeneous turbulence. Int. J. Heat Mass Transfer, 15:2371–2383, 1970.

    Article  Google Scholar 

  15. P. Lammers, K. Beronov, G. Brenner, and F. Durst. Direct simulation with the lattice Boltzmann code BEST of developed turbulence in channel flows. In S. Wagner, W. Hanke, A. Bode, and F. Durst, editors, High Performance Computing in Science and Engineering, Munich 2002. Springer, 2003.

    Google Scholar 

  16. P. Lammers, K. Beronov, R. Volkert, G. Brenner, and F. Durst. Lattice Boltzmann Direct Numerical Simulation of Fully Developed 2d-Channel Turbulence. Computers & Fluids, submitted.

    Google Scholar 

  17. J. L. Lumley and G. Newman. The return to isotropy of homogeneous turbulence. J. Fluid Mech., 82:161–178, 1977.

    Article  MathSciNet  Google Scholar 

  18. R. Moser, J. Kim, and N. Mansour. Direct numerical simulation of turbulent channel flow up to Reτ = 560. Phys. Fluids, 11, 1999.

    Google Scholar 

  19. S. B. Pope. Turbulent Flows. Cambridge Univ. Press., 2000.

    Google Scholar 

  20. Y. H. Qian, D. d'Humières, and P. Lallemand. Lattice BGK models for Navier-Stokes equation. Europhys. Lett., 17(6):479–484, 1992.

    Google Scholar 

  21. T. C. Schenk. Messung der turbulenten Dissipationsrate in ebenen und achsensymmetrischen Nachlaufströmungen. PhD thesis, Lehrstuhl für Strömungsmechanik, Universität Erlangen-Nürnberg, 1999.

    Google Scholar 

  22. U. Schumann. Realizability of Reynolds stress turbulence models. Phys. Fluids, 20:721–725, 1977.

    Article  MATH  Google Scholar 

  23. R. Volkert. Bestimmung von Turbulenzgrößen zur verbesserten Turbulenzmodellierung auf der Basis von direkten numerischen Simulationen der ebenen Kanalströmung. PhD thesis, Lehrstuhl für Strömungsmechanik, Universität Erlangen-Nürnberg, 2004. In Vorbereitung.

    Google Scholar 

  24. Q.-Y. Ye. Die turbulente Dissipation mechanischer Energie in Scherschichten. PhD thesis, Lehrstuhl für Strömungsmechanik, Universität Erlangen-Nürnberg, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lammers, P., Beronov, K.N., Zeiser, T., Durst, F. (2005). Testing of Closure Assumption for Fully Developed Turbulent Channel Flow with the Aid of a Lattice Boltzmann Simulation. In: Wagner, S., Hanke, W., Bode, A., Durst, F. (eds) High Performance Computing in Science and Engineering, Munich 2004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26657-7_7

Download citation

Publish with us

Policies and ethics