Skip to main content

Modeling density-dependent flow using hydraulic conductivity distributions obtained by means of non-stationary indicator simulation

  • Conference paper
Geostatistics for Environmental Applications

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baltes B and Röhlig K-J (2004) Longterm safety of final repositories: German experiences concerning the rĉle of uncertainty and risk in assessments and regulations. PSAM 7 — Proceedings of the 7th International Conference on Probabilistic Safety Assessment and Management, 2004. Springer, London

    Google Scholar 

  • Bonano EJ and Thompson BGJ (1993) “Guest Editorial”, Reliability Engineering & System Safety. Special issue on Probabilistic Risk Assessment for Radioactive Waste, Vol 42 Nos 2-3, 103–109

    Google Scholar 

  • Cadelli N, Escalier des Orres P, Marivoet J, Martens, K-H, Prij, J (1996) Evaluation of elements responsible for the effective engaged dose rates associated with the final storage of radioactive waste: Everest project. EUR 17122 EN. EC, Luxembourg

    Google Scholar 

  • Delhomme JP (1978) Kriging in the hydrosciences. Adv. Water Res., 1, 251–266.

    Article  Google Scholar 

  • Deutsch CV and Journel AG (1992) GSLIB. Geostatistical Software Library and User’s Guide. Oxford University Press. New York

    Google Scholar 

  • Jaquet O, Schindler M, Voborny O, Vinard P (1998) Modelling of Groundwater Flow at Wellenberg Using Monte Carlo Simulations, Mat. Res. Soc. Symp. Proc., Vol. 506, 865–872.

    Google Scholar 

  • Jaquet O, Rivera A, Genter M, Fillion E (2001) Site du Gard: Héterogénéités, Simulations Géostatistiques et Modélisation Hydrodynamique, Cahiers de Géostatistique, Fascicule 7, Fontainebleau

    Google Scholar 

  • Journel AG and Alabert FG (1988) Focusing on Spatial Connectivity of Extreme-Valued Attributes: Stochastic Indicator Models of Reservoir Heterogeneities. 63rd Annual Technical Conference and exhibition, Soc. of Pet. Eng., Richardson, Texas. SPE paper 18324

    Google Scholar 

  • König C (2002) SPRING®. Benutzerhandbuch Version 3.00. delta h Ingenieurgesellschaft mbH, Bochum

    Google Scholar 

  • LaVenue Marsh A and RamaRao BS (1992) A Modelling Approach to Address Spatial Variability within the Culebra Dolomite Transmissivity Field, SAND92-7306, Sandia National Laboratories, Albuquerque.

    Google Scholar 

  • Ludwig R (1994) Projekt Gorleben. Hydrogeologische Grundlagen für Modellrechnungen. Kenntnisstand 1994. BGR-Archiv No. 112 002. BGR Hannover, unpublished report

    Google Scholar 

  • Ludwig R and Kösters E (2002) Hydrogeologisches Modell Gorleben — Entwicklung bis zum paläohydrogeologischen Ansatz. Schriftenreihe der Deutschen Geologischen Gesellschaft, Heft 24, Hannover

    Google Scholar 

  • Marivoet J, Wemaere I, Escalier des Orres P, Baudoin P, Certes C, Levassor A, Prij J, Martens K-H, Röhlig, K-J (1997) The EVEREST project: sensitivity analysis of geological disposal systems. Reliability Engineering and System Safety 57, 79–90

    Article  Google Scholar 

  • Porter JD and Hartley LJ (1997) The Treatment of Uncertainty in Groundwater Flow and Solute Transport Modelling. Application of Indicator Kriging to Stratigraphic and Petrographic Data from the Gorleben Site. EUR 17829 EN, Luxembourg

    Google Scholar 

  • Röhlig K-J (1999) Geostatistical Analysis of the Gorleben Channel. In: Gómez-Hernández et al. (ed) GeoENV II — Geostatistics for Environmental Applications. Proceedings of the Second European Conference on Geostatistics for Environmental Applications held in Valencia, Spain, November 18-20, 1998. Kluwer Academic Publishers, Dordrecht Boston London,319–330

    Google Scholar 

  • Röhlig K-J and Pöltl B (2001) Uncertainty and Sensitivity Analyses for Contaminant Transport Models Based on Conditional Indicator Simulations. In: Monestiez P et al. (ed) GeoENV III—Geostatistics for Environmental Applications. Proceedings of the Third European Conference on Geostatistics for Environmental Applications held in Avignon, France, November 22-24, 2000. Kluwer Academic Publishers, Dordrecht Boston London, 251–26

    Google Scholar 

  • Schelkes K, Knoop R-M, Geißler N (1990) INTRAVAL PHASE II. Test Case: Saline Groundwater Movement in an Erosional Channel Crossing a Salt Dome (Part 1). BGR, Hannover

    Google Scholar 

  • Zimmerman DA et al. (1998) A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modelling advective transport by groundwater flow, Water Resour. Res., 34(6), 1373–1413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Röhlig, KJ., Fischer, H., Pöltl, B. (2005). Modeling density-dependent flow using hydraulic conductivity distributions obtained by means of non-stationary indicator simulation. In: Geostatistics for Environmental Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26535-X_19

Download citation

Publish with us

Policies and ethics