Skip to main content

Quantification of Dynamic Susceptibility Contrast T2* MRI in Oncology

  • Chapter
Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Oncology

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axel L (1980) Cerebral blood flow determination by rapid-sequence computed tomography. Radiology 137:676–686

    Google Scholar 

  • Axel L (1995) Methods using blood pool tracers, part II. In: Le Bihan D (ed) Diffusion and perfusion magnetic resonance imaging. Raven, New York, pp 205–211

    Google Scholar 

  • Barbier EL, den Boer JA, Peters AR, Rozeboom Ar, Sau J, Bonmartin A (1999) A model of the dual effect of gadopentetate dimeglumine on dynamic brain MR images. J Magn Reson Imaging 10:242:253

    Article  PubMed  Google Scholar 

  • Barbier EL, Lamalle L, Décorps M (2001) Methodology of brain perfusion imaging. J Magn Reson Imaging 13:496–520

    Article  PubMed  Google Scholar 

  • Bowtell R, Schmitt F (1998) Echo-planar imaging hardware. In: Schmitt F, Stehling MK, Turner R (eds) Echo-planar imaging. Theory, technique and application. Springer, Berlin Heidelberg New York, pp 31–64

    Google Scholar 

  • Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM (1995) MR contrast due to intravascular magnetic-susceptibility perturbations. Magn Reson Med 34:555–566

    Google Scholar 

  • Calamante F, Thomas DL, Pell GS, Wiersma J, Turner (1999) Measuring cerebral blood flow using magnetic resonance techniques. J Cereb Blood Flow Metab 19:701–735

    Article  PubMed  Google Scholar 

  • Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using Singular Value Decomposition. Magn Reson Med 44:466–473

    Article  PubMed  Google Scholar 

  • Calamante F, Ganesan V, Kirkham FJ, Jan W, Chong WK, Gadian DG, A Connelly (2001) MR perfusion imaging in moyamoya syndrome. Potential implications for clinical evaluation of occlusive cerebrovascular disease. Stroke 32:2810–2816

    PubMed  Google Scholar 

  • Calamante F, Gadian DG, Connelly A (2002) Quantification of perfusion using bolus tracking MRI in stroke. Assumptions, limitations, and potential implications for clinical use. Stroke 33:1146–1151

    Article  PubMed  Google Scholar 

  • Dennie J, Mandeville JB, Boxerman JL, Packard SD, Rosen BR (1998) NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med 40:793–799

    PubMed  Google Scholar 

  • Donahue KM, Krouwer HGJ, Rand SD, Pathak AP, Marszalkowski CS, Censky SC, Prost RW (2000) Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med 43:845–853

    Article  PubMed  Google Scholar 

  • Farrar TC, Becker ED (1971) Pulse and Fourier transform NMR. Introduction to theory and methods. Academic, New York, pp 46–65

    Google Scholar 

  • Fiehler J, von Bezold M, Kucinski T, Knab R, Eckert B, Wittkugel O, Zeumer H, Röther J (2002) Cerebral blood flow predicts lesion growth in acute stoke patients. Stroke 33:2421–2425

    Article  PubMed  Google Scholar 

  • Fischer H, Ladebeck R (1998) Echo-planar imaging image artifacts. In: Schmitt F, Stehling MK, Turner R (eds) Echo-planar imaging. Theory, technique and application. Springer, Berlin Heidelberg New York, pp 179–200

    Google Scholar 

  • Gillis P, Koenig SH (1987) Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin erythrocytes and magnetite. Magn Reson Med 5:323–345

    PubMed  Google Scholar 

  • Grandin CB, Duprez TP, Smith Am, Mataigne F, Peeters A, Oppenheim C, Cosnard G (2001) Usefulness of magnetic resonance-derived quantitative measurements of cerebral blood flow and volume in prediction of infarct growth in hyperacute stroke. Stroke 32:1147–1153

    PubMed  Google Scholar 

  • Gückel FJ, Brix G, Schmiedek P, Piepgras A, Becker G, Kopke J, Gross H, Georgi M (1996) Cerebrovascular reserve capacity in patients with occlusive cerebrovascular disease: assessment with dynamic susceptibility contrast-enhanced MR imaging and the acetazolamide stimulation test. Radiology 201:405–412

    PubMed  Google Scholar 

  • Haase A (1990) Snapshot FLASH-MRI. Applications to T1, T2, and chemical-shift imaging. Magn Reson Med 13:77–89

    Google Scholar 

  • Heiland S, Benner T, Debus J, Rempp K, Reith W, Sartor K (1999) Simultaneous assessment of cerebral hemodynamics and contrast agent uptake in lesions with disrupted blood-brain-barrier. Magn Reson Imaging 17:21–27

    PubMed  Google Scholar 

  • Hillis AE, Wityk RJ, Tuffiash E, Beacuchamp NJ, Jacobs MA, Barker PB, Selnes OA (2001) Hypoperfusion of Wenicke's area predicts severity deficit in acute stroke. Ann Neurol 50:561–566

    PubMed  Google Scholar 

  • Jackson A, Kassner A, Zhu XP, Li KL (2001) Reproducibility of T2* blood volume and vascular tortuosity maps in cerebral gliomas. J Magn Reson Imaging 14:510–516

    Article  PubMed  Google Scholar 

  • Jackson A, Kassner A, Williams DA, Reid H, Zhu XP, Li KL (2002) Abnormalities in the recirculation phase of contrast agent bolus passage in cerebral gliomas: comparison with relative blood volume and tumor grade. AJNR Am J Neuroradiol 23:7–14

    PubMed  Google Scholar 

  • Johnson KM, Tao JZT, Kennan RP, Gore JC (2000) Intravascular susceptibility agent effects on tissue transverse relaxation rates in vivo. Magn Reson Med 44:909–914

    PubMed  Google Scholar 

  • Kassner A, Annesley DJ, Zhu XP, Li KL, Kamaly-Asl ID, Watson Y, Jackson A (2000) Abnormalities of the contrast re-circulation phase in cerebral tumors demonstrated using dynamic susceptibility contrast-enhanced imaging: a possible marker of vascular tortuosity. J Magn Reson Imaging 11:103–113

    Article  PubMed  Google Scholar 

  • Kiselev VG (2001) On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 46:1113–1122

    Article  PubMed  Google Scholar 

  • Kluytmans M, van der Grond J, Viergever MA (1998) Gray matter and white matter perfusion imaging in patients with severe carotid artery lesions. Radiology 209:675–682

    PubMed  Google Scholar 

  • Levin JM, Kaufman MJ, Ross MJ, Mendelson JH, Maas LC, Cohen M, Renshaw PF (1995) Sequential dynamic susceptibility contrast MR experiments in human brain: residual contrast agent effect, steady state, and hemodynamic perturbation. Magn Reson Med 34:655–663

    PubMed  Google Scholar 

  • Levin JM, Wald LL, Kaufman MJ, Ross MJ, Maas LC, Renshaw PF (1998) T1 effects in sequential dynamic susceptibility contrast experiments. J Magn Reson 130:292–295

    Article  PubMed  Google Scholar 

  • Lin W, Celik A, Derdeyn C, An H, Lee Y, Videen T, Østergaard L, Powers WJ (2001) Quantitative measurements of cerebral blood flow in patients with unilateral carotid artery occlusion: a PET and MR study. J Magn Reson Imaging 14:659–667

    Article  PubMed  Google Scholar 

  • Miyati T, Banno T, Mase M, Kasai H, Shundo H, Imazawa M, Ohba S (1997) Dual dynamic contrast-enhanced MR imaging. J Magn Reson Imaging 7:230–235

    PubMed  Google Scholar 

  • Neumann-Haefelin T, Wittsack H-J, Wenserski F, Siebler M, Seitz RJ, Mödder U, Freund H-J (1999) Diffusion-and perfusion-weighted MRI. The DWI/PWI mismatch region in acute stroke. Stroke 30:1591–1597

    PubMed  Google Scholar 

  • Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996a) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages, part I. Mathematical approach and statistical analysis. Magn Reson Med 36:715–725

    PubMed  Google Scholar 

  • Østergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR (1996b) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages, part II. Experimental comparison and preliminary results. Magn Reson Med 36:726–736

    PubMed  Google Scholar 

  • Østergaard L, Johannsen P, Poulsen PH, Vestergaard-Poulsen P, Asboe H, Gee AD, Hansen SB, Cold GE, Gjedde A, Gyldensted C (1998) Cerebral blood flow measurements by magnetic resonance imaging bolus tracking: comparison with [O-15] H2O positron emission tomography in humans. J Cereb Blood Flow Metab 18:935–940

    Article  PubMed  Google Scholar 

  • Østergaard L, Chesler DA, Weisskoff RM, Sorensen AG, Rosen BR (1999) Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data. J Cereb Blood Flow Metab 19:690–699

    Article  PubMed  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BT (1992) Numerical recipes in C. The art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Perthen JE, Calamante F, Gadian DG, Connelly A (2002) Is quantification of bolus tracking MRI reliable without deconvolution? Magn Reson Med 47:61–67

    Article  PubMed  Google Scholar 

  • Rempp KA, Brix G, Wenz F, Becker CR, Guckel F, Lorenz WJ (1994) Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 193:637–641

    PubMed  Google Scholar 

  • Røhl L, Ostergaard L, Simonsen CZ, Vestergaard-Poulsen P, Andersen G, Sakoh M, Le Bihan D, Gyldented C (2001) Viability thresholds of ischemic penumbra of hyperacute stroke defined by perfusion-weighted MRI and apparent diffusion coefficient. Stroke 32:1140–1146

    PubMed  Google Scholar 

  • Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    PubMed  Google Scholar 

  • Schlaug G, Benfield A, Baird AE, Siewert B, Lövblad KO, Parker RA, Edelman RR, Warach S (1999) The ischemic penumbra. operationally defined by diffusion and perfusion MRI. Neurology 53:1528–1537

    PubMed  Google Scholar 

  • Schreiber WG, Gückel F, Stritzke P, Schmiedek P, Schwartz A, Brix G (1998) Cerebral blood flow and cerebrovascular reserve capacity: estimation by dynamic magnetic resonance imaging. J Cereb Blood Flow Metab 18:1143–1156

    Article  PubMed  Google Scholar 

  • Simonsen CZ, Østergaard L, Vestergaard-Poulsen P, Røhl L, Bjørnerud A, Glydensted C (1999) CBF and CBV measurements by USPIO bolus tracking: reproducibility and comparison with Gd-based values. J Magn Reson Imaging 9:342–347

    Article  PubMed  Google Scholar 

  • Smith AM, Grandin CB, Duprez T, Mataigne F, Cosnar G (2000) Whole brain quantitative CBF and CBV measurements using MRI bolus tracking: comparison of methodologies. Magn Reson Med 43:559–654

    Article  PubMed  Google Scholar 

  • Sorensen AG (2001) What is the meaning of quantitative CBF? AJNR Am J Neuroradiol 22:235–236

    PubMed  Google Scholar 

  • Sorensen AG, Reimer P (2000) Cerebral MR perfusion imaging. Principles and current applications. Thieme, Stuttgart, pp 16–20

    Google Scholar 

  • Sorensen AG, Copen WA, Ostergaard L, Buonanno FS, Gonzalez RG, Rordorf G, Rosen BR, Schwamm LH, Weisskoff RM, Koroshetz WJ (1999) Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean transit time. Radiology 210:519–527

    PubMed  Google Scholar 

  • Stehling MK, Turner R, Masfield P (1991) Echo-planar imaging: magnetic resonance imaging in a fraction of a second. Science 254:43–50

    PubMed  Google Scholar 

  • Stewart GN (1894) Researches on the circulation time in organs and on the influences which affect it, part I-III. J Physiol 15:1–89

    Google Scholar 

  • Sugahara T, Korogi Y, Kochi M, Ushio Y, Takahashi M (2001) Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. AJNR Am J Neuroradiol 22:1306–1315

    PubMed  Google Scholar 

  • Thompson HK, Starmer F, Whalen RE, McIntosh HD (1964) Indicator transit time considered as a gamma variate. Circ Res 14:502–515

    PubMed  Google Scholar 

  • Van Gelderen P, Grandin C, Petrella JR, Moonen CTW (2000) Rapid three-dimensional MR imaging method for tracking a bolus of contrast agent through the brain. Radiology 216:603–608

    PubMed  Google Scholar 

  • Van Osch MJP, Vonken EPA, Bakker CJG, Viergever MA (2001) Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magn Reson Med 45:477–485

    Google Scholar 

  • Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Chao YS, Wedeen VJ, Brady TJ (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic-susceptibility effects. Magn Reson Med 6:164–174

    PubMed  Google Scholar 

  • Vonken EPA, van Osch MJP, Baker CJG, Viergever MA (1999) Measurement of cerebral perfusion with dual-echo multislice quantitative dynamic susceptibility contrast MRI. J Magn Reson Imaging 10:109–117

    Article  PubMed  Google Scholar 

  • Vonken EPA, van Osch MJP, Baker CJG, Viergever MA (2000) Simultaneous qualitative cerebral perfusion and Gd-DTPA extravasation measurements with dual-echo dynamic susceptibility contrast MRI. Magn Reson Med 43:820–827

    Article  PubMed  Google Scholar 

  • Weisskoff RM, Chesler D, Boxerman JL, Rosen BR (1993) Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which mean transit-time? Magn Reson Med 29:553–559

    Google Scholar 

  • Weisskoff RM, Boxerman JL, Sorensen AG, Kulke SM, Campbell TA, Rosen BR (1994a) Simultaneous blood volume and permeability mapping using a single Gd-based contrast injection. Proceedings of the 2nd annual meeting of SMRM, San Francisco, p 279

    Google Scholar 

  • Weisskoff RM, Zuo CS, Boxerman JL, Rosen BR (1994b) Microscopic susceptibility variation and transverse relaxation. Theory and experiment. Magn Reson Med 31:601–610

    Google Scholar 

  • Wirestam R, Ryding E, Lindgren A, Geijer B, Holtas S, Stahlberg F (2000) Absolute cerebral blood flow measured by dynamic susceptibility contrast MRI: a direct comparison with Xe-133 SPECT. MAGMA 11:96–103

    PubMed  Google Scholar 

  • Wu O, Koroshetz WJ, Ostergaard L, Buonanno FS, Copen WA, Gonzalez RG, Rordorf G, Rosen BR, Schwamm LH, Weisskoff RM, Sorensen AG (2001) Predicting tissue outcome in acute human cerebral ischemia combined diffusion-and perfusion-weighted MR imaging. Stroke 32:933–942

    PubMed  Google Scholar 

  • Zierler KL (1965) Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 16:309–321

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Calamante, F. (2005). Quantification of Dynamic Susceptibility Contrast T2* MRI in Oncology. In: Jackson, A., Buckley, D.L., Parker, G.J.M. (eds) Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Oncology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26420-5_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-26420-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42322-5

  • Online ISBN: 978-3-540-26420-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics