Skip to main content

The Role of Blood Pool Contrast Media in the Study of Tumor Pathophysiology

  • Chapter
Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Oncology

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 1700 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abolmaali ND, Hietschold V, Appold S et al (2002) Gadomer-17-enhanced 3D navigator-echo MR angiography of the pulmonary arteries in pigs. Eur Radiol 12:692–697

    PubMed  Google Scholar 

  • Aicher KP, Dupon JW, White DL et al (1990) Contrast-enhanced magnetic resonance imaging of tumor-bearing mice treated with human recombinant tumor necrosis factor alpha. Cancer Res 50:7376–7381

    PubMed  Google Scholar 

  • Allegrini P, Rudin M, Wood J et al (2002) Nvp-laf389 reduces tumor blood volume and vascular permeability in ca20948 pancreatic tumor model as measured in vivo by dynamic contrast enhanced MRI-putative surrogate markers for efficacy. In: International Society for Magnetic Resonance in Medicine Tenth Scientific Meeting and Exhibition. Honolulu, Hawaii, USA

    Google Scholar 

  • Baish JW, Jain RK (2000) Fractals and cancer. Cancer Res 60:3683–3688

    PubMed  Google Scholar 

  • Bloom H, Richardson W (1957) Histologic grading and prognosis in breast cancer. Br J Cancer 11:359–377

    PubMed  Google Scholar 

  • Bluemke DA, Stillman AE, Bis KG et al (2001) Carotid MR angiography: phase ii study of safety and efficacy for ms-325. Radiology 219:114–122

    PubMed  Google Scholar 

  • Bonk RT, Schmiedl UP, Yuan C et al (2000) Time-of-flight MR angiography with Gd-DTPA hexamethylene diamine copolymer blood pool contrast agent: comparison of enhanced MRA and conventional angiography for arterial stenosis induced in rabbits. J Magn Reson Imaging 11:638–646

    Article  PubMed  Google Scholar 

  • Brasch RC, Berthezene Y, Vexler V et al (1993) Pulmonary oxygen toxicity: Demonstration of abnormal capillary permeability using contrast-enhanced mri. Pediatr Radiol 23:495–500

    Article  PubMed  Google Scholar 

  • Brasch RC, Li KC, Husband JE et al (2000) In vivo monitoring of tumor angiogenesis with MR imaging. Acad Radiol 7:812–823

    PubMed  Google Scholar 

  • Cavagna F, Lorusso V, Anelli P et al (2001) Preclinical profile and clinical potential of gadocoletic acid trisodium salt (b-22956/1), a new intravascular contrast medium. Contrast Media Research, Capri, Italy

    Google Scholar 

  • Cavagna F, La Noce A, Maggioni F et al (2002) Mr coronary angiography with the new intravascular contrast agent b-22956/1: first human experience. International Society for Magnetic Resonance in Medicine Tenth Scientific Meeting and Exhibition. Honolulu, Hawaii, USA

    Google Scholar 

  • Clement O, Pradel C, Siauve N et al (2001) Assessing perfusion and capillary permeability changes induced by a VEGF inhibitor in human tumor xenografts using macromolecular MR imaging contrast media. Contrast Media Research, Capri, Italy

    Google Scholar 

  • Cohen F, Kuwatsuru R, Shames D et al (1995) Contrast enhanced MRI estimation of altered capillary permeability in experimental mammary carcinomas following x-irradiation. Invest Radiol 29:970–977

    Google Scholar 

  • Crone C (1963) The permeability of capillaries in various organs determined by the use of the “indicator diffusion” method. Acta Physiol Scand 58:292–305

    PubMed  Google Scholar 

  • Crone C, Levitt DG (1984) Capillary permeability to small solutes. American Physiological Society, Bethesda

    Google Scholar 

  • Daldrup H, Shames DM, Wendland M et al (1998a) Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media. AJR Am J Roentgenol 171:941–949

    PubMed  Google Scholar 

  • Daldrup HE, Shames DM, Husseini W et al (1998b) Quantification of the extraction fraction for gadopentetate across breast cancer capillaries. Magn Reson Med 40:537–543

    PubMed  Google Scholar 

  • Daldrup-Link HE, Shames DM, Wendland M et al (2000) Comparison of gadomer-17 and gadopentetate dimeglumine for differentiation of benign from malignant breast tumors with MR imaging. Acad Radiol 7:934–944

    PubMed  Google Scholar 

  • Daldrup-Link HE, Link TM, Moller HE et al (2001) Carboxymethyldextran-a2-Gd-DOTA enhancement patterns in the abdomen and pelvis in an animal model. Eur Radiol 11:1276–1284

    Article  PubMed  Google Scholar 

  • Daldrup-Link HE, Kaiser A, Link TM et al (2002) Quantification of breast tumor microvascular permeabilities with Feruglose (Clariscan) enhanced MR-mammography: initial clinical trial. Ecr 2002. Eur Radiol [Suppl] 1:158

    Google Scholar 

  • Dvorak HF (1990) Leaky tumor vessels: consequences for tumor stroma generation and for solid tumor therapy. Prog Clin Biol Res

    Google Scholar 

  • Dvorak HF (2000) VPF/VEGF and the angiogenic response. Semin Perinatol 24:75–78

    PubMed  Google Scholar 

  • Dvorak HF, Nagy JA, Dvorak JT et al (1988) Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133:95–109

    PubMed  Google Scholar 

  • Eberhard A, Kahlert S, Goede V et al (2000) Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60:1388–1393

    PubMed  Google Scholar 

  • Fenton BM, Beauchamp BK, Paoni SF et al (2001) Characterization of the effects of antiangiogenic agents on tumor pathophysiology. Am J Clin Oncol 24:453–457

    Article  PubMed  Google Scholar 

  • Folkman J (1992) The role of angiogenesis in tumor growth. Semin Cancer Biol 3:65–71

    PubMed  Google Scholar 

  • Gerlowski LE, Jain RK (1986) Microvascular permeability of normal and neoplastic tissues. Microvasc Res 31:288–305

    PubMed  Google Scholar 

  • Gossmann A, Helbich T, Mesiano S et al (2000) Magnetic resonance imaging in an experimental model of human ovarian cancer demonstrating altered microvascular permeability after inhibition of vascular endothelial growth factor. Am J Obstet Gynecol 183:956–963

    Article  PubMed  Google Scholar 

  • Gossmann A, Helbich TH, Kuriyama N et al (2002) Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme. J Magn Reson Imaging 15:233–240

    PubMed  Google Scholar 

  • Grist TM, Korosec FR, Peters DC et al (1998) Steady-state and dynamic mr angiography with ms-325: initial experience in humans. Radiology 207:539–544

    Google Scholar 

  • Hashizume H, Baluk P, Morikawa S et al (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380

    PubMed  Google Scholar 

  • Haunso S, Paaske WP, Sejrsen P et al (1980) Capillary permeability in canine myocardium as determined by bolus injection, residue detection. Acta Physiol Scand 108:389–397

    PubMed  Google Scholar 

  • Helbich TH, Gossmann A, Mareski PA et al (2000) A new polysaccharide macromolecular contrast agent for MR imaging: biodistribution and imaging characteristics. J Magn Reson Imaging 11:694–701

    PubMed  Google Scholar 

  • Henderson E, Sykes J, Drost D et al (2000) Simultaneous MRI measurement of blood flow, blood volume, and capillary permeability in mammary tumors using two different contrast agents. J Magn Reson Imaging 12:991–1003

    Article  PubMed  Google Scholar 

  • Heuser LS, Miller FN (1986) Differential macromolecular leakage from the vasculature of tumors. Cancer 57:461–464

    PubMed  Google Scholar 

  • Hoffmann U, Loewe C, Bernhard C et al (2002) MRA of the lower extremities in patients with pulmonary embolism using a blood pool contrast agent: Initial experience. J Magn Reson Imaging 15:429–437

    PubMed  Google Scholar 

  • Hudgins PA, Anzai Y, Morris MR et al (2002) Ferumoxtran-10, a superparamagnetic iron oxide as a magnetic resonance enhancement agent for imaging lymph nodes: a phase 2 dose study. AJNR Am J Neuroradiol 23:649–656

    PubMed  Google Scholar 

  • Jain R (1987) Transport of molecules across tumor vasculature. Cancer Metast Rev 6:559–593

    Article  Google Scholar 

  • Jain R (1988) Determinants of tumor blood flow: a review. Cancer Res 48:2641–2658

    PubMed  Google Scholar 

  • Jain R (1994) Barriers to drug delivery in solid tumors. Sci Am 271:58–65

    Google Scholar 

  • Jiang Y, Zhao JJ, Tang H et al (2002) Blood pool MR contrast media ms-325 improves contrast and disease characterization of rheumatoid arthritis for longitudinal quantification of inflamed synovium and joint fluid. International Society for Magnetic Resonance in Medicine Tenth Scientific Meeting and Exhibition. Honolulu, HI, USA

    Google Scholar 

  • Kauczor HU, Kreitner KF (2000) Contrast-enhanced MRI of the lung. Eur J Radiol 34:196–207

    Article  PubMed  Google Scholar 

  • Kernstine KH, Stanford W, Mullan BF et al (1999) PET, CT, and MRI with combidex for mediastinal staging in non-small cell lung carcinoma. Ann Thorac Surg 68:1022–1028

    Article  PubMed  Google Scholar 

  • Kroft LJ, de Roos A (1999) Blood pool contrast agents for cardiovascular MR imaging. J Magn Reson Imaging 10:395–403

    Article  PubMed  Google Scholar 

  • Less JR, Skalak TC, Sevick EM et al (1991) Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res 51:265–273

    PubMed  Google Scholar 

  • Li D, Dolan RP, Walovitch RC et al (1998) Three-dimensional MRI of coronary arteries using an intravascular contrast agent. Magn Reson Med 39:1014–1018

    PubMed  Google Scholar 

  • Li D, Zheng J, Weinmann HJ (2001) Contrast-enhanced MR imaging of coronary arteries: comparison of intra-and extravascular contrast agents in swine. Radiology 218:670–678

    PubMed  Google Scholar 

  • McDonald DM, Foss AJ (2000) Endothelial cells of tumor vessels: abnormal but not absent. Cancer Metastasis Rev 19:109–120

    Article  PubMed  Google Scholar 

  • Nagy J, Brown L, Senger D et al (1989) Pathogenesis of tumor stroma generation: a critical role for leaky blood vessels and fibrin deposition. Biochim Biophys Acta 948:305–326

    PubMed  Google Scholar 

  • Ogan MD (1988) Albumin labeled with Gd-DTPA: an intravascular contrast-enhancing agent for magnetic resonance blood pool imaging: preparation and characterization. Invest Radiol 23:961

    PubMed  Google Scholar 

  • Okuhata Y, Brasch RC, Pham CD et al (1999) Tumor blood volume assays using contrast-enhanced magnetic resonance imaging: regional heterogeneity and postmortem artifacts. J Magn Reson Imaging 9:685–690

    Article  PubMed  Google Scholar 

  • Petrovsky A, Weissleder R, Hu-Lowe D et al (2002) Non-invasive mr imaging of anti-angiogenic effects induced by a VEGF-RTKI in a human xenograft model. International Society for Magnetic Resonance in Medicine Tenth Scientific Meeting and Exhibition. Honolulu, HI, USA

    Google Scholar 

  • Pham C, Roberts T, van Bruggen N et al (1998) Magnetic resonance imaging detects suppression of tumor vascular permeability after administration of antibody to vascular endothelial growth factor. Cancer Invest 6:224–230

    Google Scholar 

  • Philippens M, Pikkemaat J, Schellekens S et al (2002) USPIO contrast enhanced MRI of irradiated rat spinal cord, monitoring macrophages and blood volume changes. International Society for Magnetic Resonance in Medicine Tenth Scientific Meeting and Exhibition. Honolulu, HI, USA

    Google Scholar 

  • Renkin EM (1959) Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 197:1205–1210

    PubMed  Google Scholar 

  • Roberts T, Kuretschek K, Preda A et al (2001) Tumor microvascular changes to anti-angiogenic treatment assessed by MR contrast media of different molecular weights. Contrast Media Research, Capri, Italy

    Google Scholar 

  • Roberts T, Preda A, Turetschek K et al (2002) Permeability of b22956/1, a novel protein-binding contrast agent, resolves anti-angiogenic therapy in human breast cancer model. International Society for Magnetic Resonance in Medicine Tenth Scientific Meeting and Exhibition. Honolulu, HI, USA

    Google Scholar 

  • Scarff R, Torloni, H. (1968) Histological typing of breast tumors. World Health Organization, Geneva, pp 13–20

    Google Scholar 

  • Schmiedl U, Moseley ME, Ogan MD et al (1987) Comparison of initial biodistribution patterns of Gd-DTPA and albumin-(Gd-DTPA) using rapid spin echo MR imaging. J Comput Assist Tomogr 11:306–313

    PubMed  Google Scholar 

  • Schwickert H, Stiskal M, van Dijke CF et al (1995) Tumor angiography using high-resolution, three-dimensional magnetic resonance imaging: comparison of gadopentetate dimeglumine and a macromolecular blood-pool contrast agent. Acad Radiol 2:851–858

    PubMed  Google Scholar 

  • Schwickert H, Stiskal M, Roberts T et al (1996) Contrast-enhanced MRI assessment of tumor capillary permeability: the effect of pre-irradiation on the tumor delivery of chemotherapy. Radiology 198:893–898

    PubMed  Google Scholar 

  • Sevick EM, Jain RK (1991) Measurement of capillary filtration coefficient in a solid tumor. Cancer Res 51:1352–1355

    PubMed  Google Scholar 

  • St Lawrence KS, Lee TY (1998a) An adiabatic approximation to the tissue homogeneity model for water exchange in the brain. II. Experimental validation. J Cereb Blood Flow Metab 18:1378–1385

    Article  PubMed  Google Scholar 

  • St Lawrence KS, Lee TY (1998b) An adiabatic approximation to the tissue homogeneity model for water exchange in the brain. I. Theoretical derivation. J Cereb Blood Flow Metab 18:1365–1377

    Article  PubMed  Google Scholar 

  • Stuber M, Botnar RM, Danias PG et al (1999) Contrast agent-enhanced, free-breathing, three-dimensional coronary magnetic resonance angiography. J Magn Reson Imaging 10:790–799

    PubMed  Google Scholar 

  • Su MY, Muhler A, Lao X et al (1998) Tumor characterization with dynamic contrast-enhanced MRI using MR contrast agents of various molecular weights. Magn Reson Med 39:259–269

    PubMed  Google Scholar 

  • Su MY, Wang Z, Nalcioglu O (1999) Investigation of longitudinal vascular changes in control and chemotherapy-treated tumors to serve as therapeutic efficacy predictors. J Magn Reson Imaging 9:128–137

    Article  PubMed  Google Scholar 

  • Svendsen JH, Efsen F, Haunso S (1992) Capillary permeability of 99mtc-dtpa and blood flow rate in the human myocardium determined by intracoronary bolus injection and residue detection. Cardiology 80:18–27

    PubMed  Google Scholar 

  • Taupitz M, Schnorr J, Abramjuk C et al (2000) New generation of monomer-stabilized very small superparamagnetic iron oxide particles (VSOP) as contrast medium for MR angiography: preclinical results in rats and rabbits. J Magn Reson Imaging 12:905–911

    Article  PubMed  Google Scholar 

  • Turetschek K, Floyd E, Helbich T et al (2001a) MRI assessment of microvascular characteristics in experimental breast tumors using a new blood pool contrast agent (ms-325) with correlations to histopathology. J Magn Reson Imaging 14:237–242

    PubMed  Google Scholar 

  • Turetschek K, Floyd E, Shames DM et al (2001b) Assessment of a rapid clearance blood pool MR contrast medium (p792) for assays of microvascular characteristics in experimental breast tumors with correlations to histopathology. Magn Reson Med 45:880–886

    Article  PubMed  Google Scholar 

  • Turetschek K, Preda A, Floyd E et al (2001c) MRI monitoring of tumor response to a novel VEGF tyrosine kinase inhibitor in an experimental breast cancer model. Contrast Media Research, Capri, Italy

    Google Scholar 

  • Turetschek K, Roberts TP, Floyd E et al (2001d) Tumor microvascular characterization using ultrasmall superparamagnetic iron oxide particles (USPIO) in an experimental breast cancer model. J Magn Reson Imaging 13:882–888

    Article  PubMed  Google Scholar 

  • Van Dijke CF, Brasch RC, Roberts TP et al (1996) Mammary carcinoma model: correlation of macromolecular contrast-enhanced MR imaging characterizations of tumor microvasculature and histologic capillary density. Radiology 198:813–818

    PubMed  Google Scholar 

  • Varallyay P, Nesbit G, Muldoon LL et al (2002) Comparison of two superparamagnetic viral-sized iron oxide particles ferumoxides and ferumoxtran-10 with a gadolinium chelate in imaging intracranial tumors. AJNR Am J Neuroradiol 23:510–519

    PubMed  Google Scholar 

  • Vexler V, Clèment O, Schmitt-Willich H et al (1994) Effect of varying molecular weight of the MR contrast agent Gd-DTPA-polylysine on blood pharmacokinetics and enhancement patterns. J Magn Reson Imag 4:381–388

    Google Scholar 

  • Weidner N (1995) Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat 36:169–180

    Article  PubMed  Google Scholar 

  • Weinmann H-J, Brasch RC, Press WR et al (1984) Characteristics of gadolinium-DTPA complex: a potential MRI contrast agent. Am J Roentgenol 142:619–624

    Google Scholar 

  • Weissig VV, Babich J, Torchilin VV (2000) Long-circulating gadolinium-loaded liposomes: Potential use for magnetic resonance imaging of the blood pool. Colloids Surf B Biointerfaces 18:293–299

    Article  PubMed  Google Scholar 

  • White D, Wang S-C, Aicher K et al (1989) Albumin-(DTPAGd) 15–20: Whole body clearance, and organ distribution of gadolinium. Society of Magnetic Resonance in Medicine, 8th Annual Meeting. Amsterdam, p 807

    Google Scholar 

  • Yuan F, Leunig M, Berk DA et al (1993) Microvascular permeability of albumin, vascular surface area, and vascular volume measured in human adenocarcinoma ls174t using dorsal chamber in SCID mice. Microvasc Res 45:269–289

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fournier, L.S., Brasch, R.C. (2005). The Role of Blood Pool Contrast Media in the Study of Tumor Pathophysiology. In: Jackson, A., Buckley, D.L., Parker, G.J.M. (eds) Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Oncology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26420-5_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-26420-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42322-5

  • Online ISBN: 978-3-540-26420-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics