Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 290))

Abstract

The genes that encode immunoglobulin and T cell receptor proteins are assembled from component gene segments in a reaction known as V(D)J recombination. The reaction, and its crucial mediators RAG1 and RAG2, are essential for lymphocyte development and hence for adaptive immunity. Here we consider the biochemistry of this reaction, focusing on the DNA transactions and the proteins involved. We discuss how the RAG proteins interact with DNA and how coordinate cleavage of the DNA at two sites might be achieved. Finally, we consider the RAG proteins and V(D)J recombination from an evolutionary point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Affolter M, Percival-Smith A, Muler M, Billeter M, Qian YQ, Otting G, Wuthrich K, Gehring WJ (1991) Similarities between the homeodomain and the Hin recombinase DNA-binding domain. Cell 64:879–880

    PubMed  CAS  Google Scholar 

  • Agrawal A, Schatz DG (1997) RAG1 and RAG2 form a stable post-cleavage synaptic complex with DNA containing signal ends in V(D)J recombination. Cell 89:43–53

    PubMed  CAS  Google Scholar 

  • Agrawal A, Eastman QM, Schatz DG (1998) Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394:744–751

    PubMed  CAS  Google Scholar 

  • Akamatsu Y, Monroe R, Dudley DD, Elkin SK, Gartner F, Talukder SR, Takahama Y, Alt FW, Bassing CH, Oettinger MA (2003) Deletion of the RAG2 C terminus leads to impaired lymphoid development in mice. Proc Natl Acad Sci USA 100:1209–1214

    PubMed  CAS  Google Scholar 

  • Araki R, Fujimori A, Hamatani K, Mita K, Saito T, Mori M, Fukumura R, Morimyo M, Muto M, Itoh M, Tatsumi K, Abe M (1997) Nonsense mutation at Tyr-4046 in the DNA-dependent protein kinase catalytic subunit of severe combined immune deficiency mice. Proc Natl Acad Sci USA 94:2438–2443

    PubMed  CAS  Google Scholar 

  • Bassing CH, Alt FW, Hughes MM, D'Auteuil M, Wehrly TD, Woodman BB, Gartner F, White JM, Davidson L, Sleckman BP (2000) Recombination signal sequences restrict chromosomal V(D)J recombination beyond the 12/23 rule. Nature 405:583–586

    PubMed  CAS  Google Scholar 

  • Beall EL, Admon A, Rio DC (1994) A Drosophila protein homologous to the human p70 Ku autoimmune antigen interacts with the P transposable element inverted repeats. Proc Natl Acad Sci USA 91:12681–12685

    PubMed  CAS  Google Scholar 

  • Bernstein RM, Schluter SF, Bernstein H, Marchalonis JJ (1996) Primordial emergence of the recombination activating gene 1 (RAG1) sequence of the complete shark gene indicates homology to microbial integrases. Proc Natl Acad Sci USA 93:9454–9459

    PubMed  CAS  Google Scholar 

  • Blunt T, Finnie NJ, Taccioli GE, Smith GCM, Demengeot J, Gottlieb TM, Mizuta R, Varghese AJ, Alt FW, Jeggo PA, Jackson SP (1995) Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 80:813–823

    PubMed  CAS  Google Scholar 

  • Blunt T, Gell D, Fox M, Taccioli GE, Lehmann AR, Jackson SP, Jeggo PA (1996) Identification of a nonsense mutation in the carboxyl-terminal region of DNA-dependent protein kinase catalytic subunit in the scid mouse. Proc Natl Acad Sci USA 93:10285–10290

    PubMed  CAS  Google Scholar 

  • Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301:527–530

    PubMed  CAS  Google Scholar 

  • Boulton SJ, Jackson SP (1996) Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J 15:5093–5103

    PubMed  CAS  Google Scholar 

  • Cortes P, Ye ZS, Baltimore D (1994) RAG-1 interacts with the repeated amino acid motif of the human homologue of the yeast protein SRP1. Proc Natl Acad Sci USA 91:7633–7637

    PubMed  CAS  Google Scholar 

  • Craig NL (1988) The mechanism of conservative site-specific recombination. Annu Rev Genet 22:77–105

    PubMed  CAS  Google Scholar 

  • Cuomo CA, Oettinger MA (1994) Analysis of regions of RAG-2 important for V(D)J recombination. Nucleic Acids Res 22:1810–1814

    PubMed  CAS  Google Scholar 

  • Cuomo CA, Kirch SA, Gyuris J, Brent R, Oettinger MA (1994) Rch1, a protein that specifically interacts with the RAG-1 recombination-activating protein. Proc Natl Acad Sci U S A 91:6156–6160

    PubMed  CAS  Google Scholar 

  • Cuomo CA, Mundy CL, Oettinger MA (1996) DNA sequence and structure requirements for cleavage of V(D)J recombination signal sequences. Mol Cell Biol 16:5683–5690

    PubMed  CAS  Google Scholar 

  • Danska JS, Pflumio F, Williams CJ, Huner O, Dick JE, Guidos CJ (1994) Rescue of T cell-specific V(D)J recombination in scid mice by DNA-damaging agents. Science 266:450–455

    PubMed  CAS  Google Scholar 

  • Danska JS, Holland DP, Mariathasan S, Williams KM, Guidos CJ (1996) Biochemical and genetic defects in the DNA-dependent protein kinase in murine scid lymphocytes. Mol Cell Biol 16:5507–5517

    PubMed  CAS  Google Scholar 

  • Derbyshire KM, Grindley NDF (1992) Binding of the IS903 transposase to its inverted repeat in vitro. EMBO J 11:3449–3455

    PubMed  CAS  Google Scholar 

  • Difilippantonio MJ, McMahan CJ, Eastman QM, Spanopoulou E, Schatz DG (1996) RAG1 mediates signal sequence recognition and recruitment of RAG2 in V(D)J recombination. Cell 87:253–262

    PubMed  CAS  Google Scholar 

  • Dreyfus DH (1992) Evidence suggesting an evolutionary relationship between transposable elements and immune system recombination sequences. Mol Immunol 29:807–819

    PubMed  CAS  Google Scholar 

  • Eastman QM, Leu TMJ, Schatz DG (1996) Initiation of V(D)J recombination in vitro obeying the 12/23 rule. Nature 380:85–88

    PubMed  CAS  Google Scholar 

  • Elkin SK, Matthews AG, Oettinger MA (2003) The C-terminal portion of RAG2 protects against transposition in vitro. EMBO J 22:1931–1938

    PubMed  CAS  Google Scholar 

  • Feng J-A, Johnson RC, Dickerson RE (1994) Hin recombinase bound to DNA: the origin of specificity in major and minor groove interactions. Science 263:348–355

    PubMed  CAS  Google Scholar 

  • Fugmann SD, Schatz DG (2001) Identification of basic residues in RAG2 critical for DNA binding by the RAG1-RAG2 complex. Mol Cell 8:899–910

    PubMed  CAS  Google Scholar 

  • Fugmann SD, Villey IJ, Ptaszek LM, Schatz DG (2000) Identification of two catalytic residues in RAG1 that define a single active site within the RAG1/RAG2 protein complex. Mol Cell 5:97–107

    PubMed  CAS  Google Scholar 

  • Gehring WJ, Affolter M, Burglin T (1994) Homeodomain proteins. Annu Rev Bio-chem 63:487–526

    CAS  Google Scholar 

  • Gellert M (1992) V(D)J recombination gets a break. Immunol Today 8:408–412

    CAS  Google Scholar 

  • Gellert M (2002) V(D)J recombination: RAG proteins, repair factors, regulation. Annu Rev Biochem 71:101–132

    PubMed  CAS  Google Scholar 

  • Gilfillan S, Dierich A, Lemeur M, Benoist C, Mathis D (1993) Mice lacking TdT: mature animals with an immature lymphocyte repertoire. Science 261:1175–1178

    PubMed  CAS  Google Scholar 

  • Grindley NDF, Leschziner AE (1995) DNA transposition: from a black box to a color monitor. Cell 83:1063–1066

    PubMed  CAS  Google Scholar 

  • Han J-O, Steen SB, Roth DB (1997) Ku86 is not required for protection of signal ends or for formation of nonstandard V(D)J recombination products. Mol Cell Biol 17:2226–2234

    PubMed  CAS  Google Scholar 

  • Hansen JD, Kaattari SL (1995) The recombination activating gene 1 (RAG1) of rainbow trout (Oncorhynchus mykiss): cloning, expression, phylogenetic analysis. Immunogenetics 42:188–195

    PubMed  CAS  Google Scholar 

  • Hesse JE, Lieber MR, Mizuuchi K, Gellert M (1989) V(D)J recombination: a functional definition of the joining signals. Genes Dev 3:1053–1061

    PubMed  CAS  Google Scholar 

  • Hesslein DG, Schatz DG (2001) Factors and forces controlling V(D)J recombination. Adv Immunol 78:169–232

    PubMed  CAS  Google Scholar 

  • Hiom K, Gellert M (1997) A stable RAG1-RAG2-DNA complex that is active in V(D)J cleavage. Cell 88:65–72

    PubMed  CAS  Google Scholar 

  • Hiom K, Gellert M (1998) Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol Cell 1:1011–1019

    PubMed  CAS  Google Scholar 

  • Hiom K, Melek M, Gellert M (1998) DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94:463–470

    PubMed  CAS  Google Scholar 

  • Hughes KT, Gaines PCW, Karlinsey JE, Vinayak R, Simon MI (1992) Sequence-specific interaction of the Salmonella Hin recombinase in both major and minor grooves of DNA. EMBO J 11:2695–2705

    PubMed  CAS  Google Scholar 

  • Jackson SP (1996) The recognition of DNA damage. Curr Opin Genet Dev 6:19–25

    PubMed  CAS  Google Scholar 

  • Jackson SP, Jeggo PA (1995) DNA double-strand break repair and V(D)J recombination: involvement of DNA-PK. Trends Biochem Sci 20:412–415

    PubMed  CAS  Google Scholar 

  • Kallenbach S, Doyen N, Dandon MF, Rougeon F (1992) Three lymphoid-specific factors account for all junctional diversity characteristic of somatic assembly of T-cell receptor and immunoglobulin genes. Proc Natl Acad Sci USA 89:2799–2803

    PubMed  CAS  Google Scholar 

  • Kim DR, Dai Y, Mundy CL, Yang W, Oettinger MA (1999) Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Genes Dev 13:3070–3080

    PubMed  CAS  Google Scholar 

  • Kirchgessner CU, Patil CK, Evans JW, Cuomo CA, Fried LM, Carter T, Oettinger MA, Brown JM (1995) DNA-dependent kinase (p350) as a candidate gene for the murine scid defect. Science 267:1178–1183

    PubMed  CAS  Google Scholar 

  • Komori T, Okada A, Stewart V, Alt FW (1993) Lack of N regions in antigen receptor variable region genes of TdT-deficient lymphocytes. Science 261:1171–1175

    PubMed  CAS  Google Scholar 

  • Krangel MS (2003) Gene segment selection in V(D)J recombination: accessibility and beyond. Nat Immunol 4:624–630

    PubMed  CAS  Google Scholar 

  • Kruklitis R, Welty DJ, Nakai H (1996) ClpX protein of Escherichia coli activates bacteriophage Mu transposase in the strand transfer complex for initiation of Mu DNA synthesis. EMBO J 15:935–944

    PubMed  CAS  Google Scholar 

  • Landree MA, Wibbenmeyer JA, Roth DB (1999) Mutational analysis of RAG1 and RAG2 identifies three catalytic amino acids in RAG1 critical for both cleavage steps of V(D)J recombination. Genes Dev 13:3059–3069

    PubMed  CAS  Google Scholar 

  • Lees-Miller SP, Godbout R, Chan DW, Weinfeld M, Day RS, Barron GM, Allalunis-Turner J (1995) Absence of p350 subunit of DNA-activated protein kinase from a radiosensitive human cell line. Science 267:1183–1185

    PubMed  CAS  Google Scholar 

  • Leu TMJ, Schatz DG (1995) Rag-1 and rag-2 are components of a high-molecular-weight complex, association of rag-2 with this complex is rag-1 dependent. Mol Cell Biol 15:5657–5670

    PubMed  CAS  Google Scholar 

  • Levchenko I, Luo L, Baker TA (1995) Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes Dev 9:2399–2408

    PubMed  CAS  Google Scholar 

  • Lewis S, Gellert M (1989) The mechanism of antigen receptor gene assembly. Cell 59:585–588

    PubMed  CAS  Google Scholar 

  • Lewis SM (1994a) The mechanism of V(D)J joining: lessons from molecular, immunological, comparative analyses. Adv Immunol 56:27–150

    PubMed  CAS  Google Scholar 

  • Lewis SM (1994b) P nucleotide insertions and the resolution of hairpin DNA structures in mammalian cells. Proc Natl Acad Sci USA 91:1332–1336

    PubMed  CAS  Google Scholar 

  • Li Z, Dordai DI, Lee J, Desiderio S (1996) A conserved degradation signal regulates RAG-2 accumulation during cell division and links V(D)J recombination to the cell cycle. Immunity 5:575–589

    PubMed  Google Scholar 

  • Li ZY, Otevrel T, Gao YJ, Cheng HL, Seed B, Stamato TD, Taccioli GE, Alt FW (1995) The XRCC4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination. Cell 83:1079–1089

    PubMed  CAS  Google Scholar 

  • Liang HE, Hsu LY, Cado D, Cowell LG, Kelsoe G, Schlissel MS (2002) The “dispensable” portion of RAG2 is necessary for efficient V-to-DJ rearrangement during B and T cell development. Immunity 17:639–651

    PubMed  CAS  Google Scholar 

  • Lieber MR (1991) Site-specific recombination in the immune system. FASEB J 5:2934–2944

    PubMed  CAS  Google Scholar 

  • Lieber MR, Hesse JE, Lewis S, Bosma GC, Rosenberg N, Mizuuchi K, Bosma MJ, Gellert M (1988) The defect in murine severe combined immune deficiency: joining of signal sequences but not coding segments in V(D)J recombination. Cell 55:7–16

    PubMed  CAS  Google Scholar 

  • Lin W, Desiderio S (1993) Regulation of V(D)J recombination activator protein RAG-2 by phosphorylation. Science 260:953–959

    PubMed  CAS  Google Scholar 

  • Livak F, Welsh SC, Guidos CJ, Crispe IN, Danska JS, Schatz DG (1996) Transient restoration of gene rearrangement at multiple T cell receptor loci in γ irradiated scid mice. J Exp Med 184:419–428

    PubMed  CAS  Google Scholar 

  • Ma YM, Pannicke U, Schwarz K, Lieber MR (2002) Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108:781–794

    PubMed  CAS  Google Scholar 

  • McBlane JF, van Gent DC, Ramsden DA, Romeo C, Cuomo CA, Gellert M, Oettinger MA (1995) Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 83:387–395

    PubMed  CAS  Google Scholar 

  • McMahan CJ (1996) A functional analysis of the recombination activating genes RAG1 and RAG2 in V(D)J recombination. PhD thesis, Yale University

    Google Scholar 

  • McMahan CJ, Difilippantonio MJ, Rao N, Spanopoulou ES, Schatz DG (1997) A basic motif in the N-terminal region of RAG1 enhances recombination activity. Mol Cell Biol 17:4544–4552

    PubMed  CAS  Google Scholar 

  • Mizuuchi K (1992) Transpositional recombination: mechanistic insights from studies of Mu and other elements. Annu Rev Biochem 61:1011–1051

    PubMed  CAS  Google Scholar 

  • Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68:869–877

    PubMed  CAS  Google Scholar 

  • Moshous D, Callebaut I, de Chasseval R, Corneo B, Cavazzana-Calvo M, Le Deist F, Tezcan I, Sanal O, Bertrand Y, Philippe N et al. (2001) Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105:177–186

    PubMed  CAS  Google Scholar 

  • Nadel B, Feeney AJ (1995) Influence of coding-end sequence on coding-end processing in V(D)J recombination. J Immunol 155:4322–4329

    PubMed  CAS  Google Scholar 

  • Nussenzweig A, Chen CH, Soares VD, Sanchez M, Sokol K, Nussenzweig MC, Li GC (1996) Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 382:551–555

    PubMed  CAS  Google Scholar 

  • Oettinger MA, Schatz DG, Gorka C, Baltimore D (1990) RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248:1517–1523

    PubMed  CAS  Google Scholar 

  • Panayotou G, Waterfield MD, End P (1993) Riding the evanescent wave. Curr Biol 3:913–915

    PubMed  CAS  Google Scholar 

  • Peak MM, Arbuckle JL, Rodgers KK (2003) The central domain of core RAG1 preferentially recognizes single-stranded recombination signal sequence heptamer. J Biol Chem 278:18235–18240

    PubMed  CAS  Google Scholar 

  • Pergola F, Zdzienicka MZ, Lieber MR (1993) V(D)J recombination in mammalian cell mutants defective in DNA double-strand break repair. Mol Cell Biol 13:3464–3471

    PubMed  CAS  Google Scholar 

  • Qiu JX, Kale SB, Schultz HY, Roth DB (2001) Separation-of-function mutants reveal critical roles for RAG2 in both the cleavage and joining steps of V(D)J recombination. Mol Cell 7:77–87

    PubMed  CAS  Google Scholar 

  • Rabbitts TH (1994) Chromosomal translocations in human cancer. Nature 372:143–149

    PubMed  CAS  Google Scholar 

  • Rajewsky K (1996) Clonal selection and learning in the antibody system. Nature 381:751–758

    PubMed  CAS  Google Scholar 

  • Ramsden DA, Baetz K, Wu GE (1994) Conservation of sequence in recombination signal sequence spacers. Nucleic Acids Res 22:1785–1796

    PubMed  CAS  Google Scholar 

  • Ramsden DA, McBlane JF, van Gent DC, Gellert M (1996) Distinct DNA sequence and structure requirements for the two steps of V(D)J recombination signal cleavage. EMBO J 15:3197–3206

    PubMed  CAS  Google Scholar 

  • Rathbun GA, Tucker PW (1987) Conservation of sequences necessary for V gene recombination. In: Kelsoe G, Schultze DH (eds) Evolution and vertebrate immunity: the antigen receptor and MHC families. Academic Press, pp 85–115

    Google Scholar 

  • Rodgers KK, Bu Z, Fleming KG, Schatz DG, Engelman DM, Coleman JE (1996) A unique zinc-binding dimerization motif domain in RAG-1 includes the C3HC4 motif. J Mol Biol 260:70–84

    PubMed  CAS  Google Scholar 

  • Roman CAJ, Baltimore D (1996) Genetic evidence that the RAG1 protein directly participates in V(D)J recombination through substrate recognition. Proc Natl Acad Sci USA 93:2333–2338

    PubMed  CAS  Google Scholar 

  • Roman CAJ, Cherry SR, Baltimore D (1997) Complementation of V(D)J recombination deficiency in RAG-1(-/-) B cells reveals a requirement for novel elements in the N-terminus of RAG-1. Immunity 7:13–24

    PubMed  CAS  Google Scholar 

  • Roth DB, Menetski JP, Nakajima PB, Bosma MJ, Gellert M (1992) V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 70:983–991

    PubMed  CAS  Google Scholar 

  • Sadofsky MJ, Hesse JE, McBlane JF, Gellert M (1993) Expression and V(D)J recombination activity of mutated RAG-1 proteins. Nucleic Acids Res 22:5644–5650

    Google Scholar 

  • Sadofsky MJ, Hesse JE, Gellert M (1994) Definition of a core region of RAG-2 that is functional in V(D)J recombination. Nucleic Acids Res 22:1805–1809

    PubMed  CAS  Google Scholar 

  • Sadofsky MJ, Hesse JE, Vangent DC, Gellert M (1995) RAG-1 mutations that affect the target specificity of V(D)J recombination—a possible direct role of RAG-1 in site recognition. Genes Dev 9:2193–2199

    PubMed  CAS  Google Scholar 

  • Sawchuk DJ, Weis-Garcia F, Malik S, Besmer E, Bustin M, Nussenzweig MC, Cortes P (1997) V(D)J recombination: modulation of RAG1 and RAG2 cleavage activity on 12/23 substrates by whole cell extract and DNA bending proteins. J Exp Med 185:2025–2032

    PubMed  CAS  Google Scholar 

  • Schatz DG, Baltimore D (1988) Stable expression of immunoglobulin gene V(D)J recombinase activity by gene transfer into 3T3 fibroblasts. Cell 53:107–115

    PubMed  CAS  Google Scholar 

  • Schatz DG, Oettinger MA, Baltimore D (1989) The V(D)J recombination activating gene (RAG-1). Cell 59:1035–1048

    PubMed  CAS  Google Scholar 

  • Schlissel M, Constantinescu A, Morrow T, Baxter M, Peng A (1993) Double-strand signal sequence breaks in V(D)J recombination are blunt, 5′-phosphorylated RAG-dependent, cell cycle regulated. Genes Dev 7:2520–2532

    PubMed  CAS  Google Scholar 

  • Schlissel MS, Stanhope-Baker P (1997) Accessibility and the developmental regulation of V(D)J recombination. Sem Immunol 9:161–170

    CAS  Google Scholar 

  • Schuler W, Weiler IJ, Schuler A, Phillips RA, Rosenberg N, Mak TK, Kearney JF, Perry RP, Bosma MJ (1986) Rearrangement of antigen receptor genes is defective in mice with severe combined immune deficiency. Cell 46:963–972

    PubMed  CAS  Google Scholar 

  • Schultz HY, Landree MA, Qiu JX, Kale SB, Roth DB (2001) Joining-deficient RAG1 mutants block V(D)J recombination in vivo and hairpin opening in vitro. Mol Cell 7:65–75

    CAS  Google Scholar 

  • Schwarz K, Gauss GH, Ludwig L, Pannicke U, Li Z, Lindner D, Friedrich W, Seger RA, Hansenhagge TE, Desiderio S, Lieber MR, Bartram CR (1996) RAG mutations in human B cell-negative SCID. Science 274:97–99

    PubMed  CAS  Google Scholar 

  • Shinkai Y, Rathbun G, Kong-Peng L, Oltz EM, Stewart V, Mendelsohn M, Charron J, Datta M, Young F, Stall AM, Alt FW (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68:855–867

    PubMed  CAS  Google Scholar 

  • Silver DP (1993) Studies of the structure and function of the RAG-1 and RAG-2 genes. PhD thesis, Massachusetts Institute of Technology

    Google Scholar 

  • Silver DP, Spanopoulou E, Mulligan RC, Baltimore D (1993) Dispensable sequence motifs in the RAG-1 and RAG-2 genes for plasmid-V(D)J recombination. Proc Natl Acad Sci USA 90:6100–6104

    PubMed  CAS  Google Scholar 

  • Simon M, Zieg J, Silverman M, Mandel G, Doolittle R (1980) Phase variation: evolution of a controlling element. Science 209:1370–1374

    PubMed  CAS  Google Scholar 

  • Smider V, Chu G (1997) The end-joining reaction in V(D)J recombination. Sem Immunol 9:189–197

    CAS  Google Scholar 

  • Spanopoulou E (1996) Cellular and molecular analysis of lymphoid development using Rag-deficient mice. Int Rev Immunol 13:257–284

    PubMed  CAS  Google Scholar 

  • Spanopoulou E, Roman CAJ, Corcoran LM, Schlissel MS, Silver DP, Nemazee D, Nussenzweig MC, Shinton SA, Hardy RR, Baltimore D (1994) Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice. Genes Dev 8:1030–1042

    PubMed  CAS  Google Scholar 

  • Spanopoulou E, Cortes P, Shih C, Huang CM, Silver DP, Svec P, Baltimore D (1995) Localization, interaction RNA binding properties of the V(D)J recombination-activating proteins RAG1 and RAG2. Immunity 3:715–726

    PubMed  CAS  Google Scholar 

  • Spanopoulou E, Zaitseva F, Wang F-H, Santagata S, Baltimore D, Panayotou G (1996) The homeodomain of Rag-1 reveals the parallel mechanisms of bacterial and V(D)J recombination. Cell 87:263–276

    PubMed  CAS  Google Scholar 

  • Stanhope-Baker P, Hudson KM, Shaffer AL, Constantinescu A, Schlissel MS (1996) Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vivo. Cell 85:887–897

    PubMed  CAS  Google Scholar 

  • Steen SB, Gomelsky L, Speidel SL, Roth DB (1997) Initiation of V(D)J recombination in vivo: role of recombination signal sequences in formation of single and paired double-strand breaks. EMBO J 16:2656–2664

    PubMed  CAS  Google Scholar 

  • Steen SB, Han JO, Mundy C, Oettinger MA, Roth DB (1999) Roles of the “dispensable” portions of RAG-1 and RAG-2 in V(D)J recombination. Mol Cell Biol 19:3010–3017

    PubMed  CAS  Google Scholar 

  • Taccioli GE, Rathbun G, Oltz E, Stamato T, Jeggo PA, Alt FW (1993) Impairment of V(D)J recombination in double-strand break repair mutants. Science 260:207–210

    PubMed  CAS  Google Scholar 

  • Thompson CB (1995) New insights into V(D)J recombination and its role in the evolution of the immune system. Immunity 3:531–539

    PubMed  CAS  Google Scholar 

  • Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302:575–581

    PubMed  CAS  Google Scholar 

  • Tsai CL, Schatz DG (2003) Regulation of RAG1/RAG2-mediated transposition by GTP and the C-terminal region of RAG2. EMBO J. 22:1922–1930

    PubMed  CAS  Google Scholar 

  • Tsai CL, Drejer AH, Schatz DG (2002) Evidence of a critical architectural function for the RAG proteins in end processing, protection, joining in V(D)J recombination. Genes Dev 16:1934–1949

    PubMed  CAS  Google Scholar 

  • Tuteja N, Tuteja R, Ochem A, Taneja P, Huang NW, Simoncsits A, Susic S, Rahman K, Marusic L, Chen J, Zhang J, Wang S, Pongor S, Falaschi A (1994) Human DNA helicase II: a novel DNA unwinding enzyme identified as the Ku autoantigen. EMBO J 13:4991–5001

    PubMed  CAS  Google Scholar 

  • Van de Putte P, Goosen N (1992) DNA inversions in phages and bacteria. Immunol Today 8:457–462

    Google Scholar 

  • Van Gent DC, McBlane JF, Ramsden DA, Sadofsky MJ, Hesse JE, Gellert M (1995) Initiation of V(D)J recombination in a cell-free system. Cell 81:925–934

    PubMed  Google Scholar 

  • Van Gent DC, Mizuuchi K, Gellert M (1996a) Similarities between initiation of V(D)J recombination and retroviral integration. Science 271:1592–1594

    PubMed  Google Scholar 

  • Van Gent DC, Ramsden DA, Gellert M (1996b) The RAG1 and RAG2 proteins establish the 12/23 rule in V(D)J recombination. Cell 85:107–113

    PubMed  Google Scholar 

  • Van Gent DC, Hiom K, Paull TT, Gellert M (1997) Stimulation of V(D)J cleavage by high mobility group proteins. EMBO J 16:2665–2670

    PubMed  Google Scholar 

  • Von Boehmer H (1995) T cell differentiation: control by the pre-TCR and alpha beta TCR. Clin Immunol Immunopathol 76:145–150

    Google Scholar 

  • Vos JC, Plasterk RHA (1994) Tc1 transposase of Caenorhabditis elegans is an endonuclease with a bipartite DNA binding domain. EMBO J 13:6125–6132

    PubMed  CAS  Google Scholar 

  • Vos JC, van Luenen HGAM, Plasterk RHA (1993) Characterization of the Caenorhabditis elegans Tc1 transposase in vivo and in vitro. Genes Dev 7:1244–1253

    PubMed  CAS  Google Scholar 

  • Wang JC, Caron PR, Kim RA (1990) The role of DNA topoisomerases in recombination and genome stability: a double-edged sword? Cell 62:403–406

    PubMed  CAS  Google Scholar 

  • Weaver DT (1995) What to do at an end—DNA double-strand-break repair. Trends Genet 11:388–392

    PubMed  CAS  Google Scholar 

  • White R (1994) Homeotic genes seek partners. Curr Biol 4:48–50

    PubMed  CAS  Google Scholar 

  • Willerford DM, Swat W, Alt FW (1996) Developmental regulation of V(D)J recombination and lymphocyte differentiation. Curr Opin Genet Dev 6:603–609

    PubMed  CAS  Google Scholar 

  • Young F, Ardman B, Shinkai Y, Lansford R, Blackwell TK, Mendelsohn M, Rolink A, Melchers F, Alt FW (1994) Influence of immunoglobulin heavy-and light-chain expression on B-cell differentiation. Genes Dev 8:1043–1057

    PubMed  CAS  Google Scholar 

  • Zhu CM, Bogue MA, Lim DS, Hasty P, Roth DB (1996) Ku86-deficient mice exhibit severe combined immunodeficiency and defective processing of V(D)J recombination intermediates. Cell 86:379–389

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this chapter

Cite this chapter

Schatz, D.G., Spanopoulou, E. (2005). Biochemistry of V(D)J Recombination. In: Singh, H., Grosschedl, R. (eds) Molecular Analysis of B Lymphocyte Development and Activation. Current Topics in Microbiology and Immunology, vol 290. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26363-2_4

Download citation

Publish with us

Policies and ethics