Skip to main content

Chemical reactions in alkali metals

  • Conference paper
  • First Online:
Analytical Problems

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 134))

Abstract

Liquid alkali metals are of interest for several technical applications due to their physical and nuclear properties. Problems of safe handling and protection against atmospheric gases and water are caused by their chemical reactivity. Several chemical reactions occur even in purified liquid alkali metals.

Alkali oxides are thermodynamically stable up to very high temperatures, and even hydrides have saline character and considerable stability. Lithium nitride is a compound which can be isolated from the solution in the metal in crystalline form. Dissolved oxides have the ability to react with transition metal oxides to form complex oxides, or with hydrogen to form hydroxides of the beavier alkali metals. Lithium cyanamide is formed by means of the reaction between nitrogen and carbon dissolved in the molten metal. The reaction product in liquid sodium is sodium cyanide.

Carbon dispersed in liquid alkali metals is hydrided by the reaction with dissolved hydrogen or hydrides to evolve methane. Some reactions of non-metals dissolved in the motals are important for the compatibility of materials with the alkali metals. Transition metals are almost insoluble in molten alkali metals. Their solubilities can be considerably raised by dissolved non-metals. Several metals of the fourth and fifth group form one or more intermetallic compounds with alkali metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. Klemm, A.: Angew. Chem. 70, 21 (1958)

    Google Scholar 

  2. Cairns, E. J., Shimotake, H.: Science 164, 1347 (1969)

    Google Scholar 

  3. Dreyer, S., Haubold, W., Goetzmann, C.: Ullmanns Enzyklopädie der technischen Chemie, Vol. 14, 102 (1977)

    Google Scholar 

  4. Weber, N., Kummer, J. T.: Proc. 21st. Annual Power Sources Conf. 21, 42 (1967); Adv. Energy Convers. 1967, 913

    Google Scholar 

  5. Brost, O., Groll, M., Schubert, K. P.: Reprints of the 1st. Intern. Heat Pipe Conf., Stuttgart 1973; Verein Deutscher Ingenieure, Düsseldorf 1973

    Google Scholar 

  6. Freund, J. H.: Atomkernenergie 11, 221 (1966)

    Google Scholar 

  7. Yonco, R. M., Maroni, V. A., Strain, J. E., DeVan, J. H.: J. Nucl. Mat. 79, 354 (1979)

    Article  Google Scholar 

  8. Eichelberger, R. L.: Report AEC-AI 12685 (1968)

    Google Scholar 

  9. Noden, J. D.: J. Brit. Nucl. Energy Soc. 12, 57 and 329, (1973)

    Google Scholar 

  10. Minushkin, D., Kissel, G., in: Corrosion by Liquid Metals, Plenum Press, New York 1970, 515

    Google Scholar 

  11. Smith, D. L., Kassner, T. F., in: Corrosion by Liquid Metals, Plenum Press, New York 1970, 137

    Google Scholar 

  12. Williams, D. D., Grand, J. A., Miller, R. R.: J. Phys. Chem. 63, 68 (1959)

    Article  Google Scholar 

  13. Ganesan, V., Borgstedt, H. U., Adelhelm, Ch.: J. Less-Common Metals 113, (1985)

    Google Scholar 

  14. Touzain, Ph.: Canad. J. of Chem. 47, 2639 (1969)

    Google Scholar 

  15. Knights, C. F., Phillips, B. A.: J. Nucl. Mat. 84, 196 (1979)

    Article  Google Scholar 

  16. Rohde, J. F. M., Hissink, M., Bos, L.: ibid. 24, 503 (1970)

    Google Scholar 

  17. Borgstedt, H. U., Frees, G., Drechsler, G.: Werkst. & Korros. 21, 568 (1970)

    Google Scholar 

  18. Borgstedt, H. U., Schneider, W.: J. Nucl. Mat. 37, 114 (1970)

    Article  Google Scholar 

  19. Borgstedt, H. U.: Werkst. & Korros. 28, 529 (1977)

    Google Scholar 

  20. Chiotti, P., Wu, P. C. S., Fisher, R. W.: J. Nucl. Mat. 38, 260 (1971)

    Article  Google Scholar 

  21. Gross, P., Wilson, G. L., Gutteridge, W. A.: J. Chem. Soc. (A) 1970, 1908

    Google Scholar 

  22. Bhat, N. P., Borgstedt, H. U.: Nucl. Technol. 52, 153 (1981)

    Google Scholar 

  23. Cavell, I. W., Nicholas, M. G.: J. Nucl. Mat. 95, 129 (1980)

    Article  Google Scholar 

  24. Awasthi, S. P., Borgstedt, H. U.: ibid. 116, 103 (1983)

    Article  Google Scholar 

  25. Barker, M. G., Wood, D. J.: J. Less-Common Metals 35, 315 (1974)

    Article  Google Scholar 

  26. Gross, P., Wilson, G. L.: J. Chem. Soc. (A) 1970, 1913

    Google Scholar 

  27. Addison, C. C., Barker, M. G., Lintonbon, R. M., Pulham, R. J.: ibid. 1969, 2457

    Google Scholar 

  28. Adamson, M. G., Mignanelli, M. A., Potter, P. E., Rand, M. H.: J. Nucl. Mat. 97, 203 (1981)

    Article  Google Scholar 

  29. Cordfunke, E. H. P., Westrum jr., E. F., in: Thermodynamics of Nuclear Materials 1979, Vol. 2, IAEA-SM-236 (1980) 125

    Google Scholar 

  30. Gadd, P. G., Borgstedt, H. U., in: Liquid Metal Engineering and Technology, Vol. 2, Brit. Nucl. Energy Soc., London 1984, 107

    Google Scholar 

  31. Migge, H., in: Proc. 2nd. Intern. Conf. on Liquid Metal Technology in Energy Production (CONF-800401-P2), Richland, Wash., USA, April 20–24, 1980, vol. 2, 18–9

    Google Scholar 

  32. Jansson, S. A., in: Corrosion by Liquid Metals, Plenum Press, New York 1970, 523

    Google Scholar 

  33. Myles, K. M., Cafasso, F. A.: J. Nucl. Mat. 67, 249 (1977)

    Article  Google Scholar 

  34. Ganesan, V., Borgstedt, H. U.: to be published

    Google Scholar 

  35. Carmichael, H. T., Meacham, S. A.: The Solubility of Sodium Carbonate in Sodium, Report USAEC-APDA-184 (1968)

    Google Scholar 

  36. Migge, H., in: Material Behavior and Physical Chemistry in Liquid Metal Systems, Plenum Press, New York 1982, 351

    Google Scholar 

  37. Borgstedt, H. U.: Metall 34, 143 (1980)

    Google Scholar 

  38. Fedorov, P. I., Su, M. T.: Acta Chim. Sinica (Hua Hsuah Hsueh Pa O) 23, 30 (1957)

    Google Scholar 

  39. Secrist, D. R., Wisnyi, L. G.: Acta Cryst. 15, 1042 (1962)

    Article  Google Scholar 

  40. Föppl, H.: Angew. Chem. 70, 401 (1958)

    Google Scholar 

  41. Pulham, R. J., Hubberstey, P., Thunder, A. E., Harper, A., Dadd, A. T., in: Proc. 2nd. Intern. Conf. on Liquid Metal Technology in Energy Production (CONF-800401-P2) Richland, Wash., USA, April 20–24, 1980, Vol. 2, 18-1

    Google Scholar 

  42. Rüdorff, W., Schulze, E.: Z. Anorg. Allgem. Chem. 277, 156 (1954)

    Article  Google Scholar 

  43. Asher, R. C., Wilson, S. A.: Nature (London) 181, 409 (1958)

    Google Scholar 

  44. Olson, W. H., Ruther, W. E.: Nucl. Techn. 46, 318 (1979)

    Google Scholar 

  45. Yonco, R. M., Homa, M. I.: Trans. Amer. Nucl. Soc. 32, 270 (1979)

    Google Scholar 

  46. Ainsley, R., Hartlib, A. P., Holroyd, P. M., Long, G.: J. Nucl. Mat. 52, 255 (1974)

    Article  Google Scholar 

  47. Longson, B., Thorley, A. W.: J.Appl. Chem. 20, 372 (1970)

    Google Scholar 

  48. Asher, R. C., Kirstein, T. B. A., in: Liquid Metals 1976, Conf. Series no. 30, The Inst. of Physics, Bristol and London 1977, 561

    Google Scholar 

  49. Salzano, F. J., Newman, L., Hobdell, M. R.: Nucl. Techn. 10, 335 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag

About this paper

Cite this paper

Borgstedt, H.U. (1986). Chemical reactions in alkali metals. In: Analytical Problems. Topics in Current Chemistry, vol 134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-16403-0_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-16403-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16403-6

  • Online ISBN: 978-3-540-39773-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics