Skip to main content

The relativistic mass increase for spinning systems

  • Part I. Mass quantization: The search for the basis states
  • Chapter
  • First Online:
The Nature of the Elementary Particle

Part of the book series: Lecture Notes in Physics ((LNP,volume 81))

  • 292 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 6

  1. The quotation by Max von Laue at the beginning of the chapter is from the article “Inertia and Energy,” which was published in the book Albert Einstein: Philosopher-Scientist, Tudor Publishing Company, New York (1949).

    Google Scholar 

  2. The quotation by Leonard Schiff at the beginning of the chapter is from his classic textbook Quantum Mechanics, McGraw-Hill, New York, Second Edition (1955),page 331. Other textbooks are not in agreement with this viewpoint; for example, in the book Introduction to Modern Physics, McGraw-Hill, New York, Fifth Edition (1955), by F. K. Richtmyer, E. H. Kennard, and T. Lauritsen, a discussion is given on page 252 in which a rotating Lorentz electron has a relativistic distortion of the charge distribution which produces a change in the energy of the electron. The reason we included this quotation by Schiff is that it serves to illustrate the conceptual difficulties imposed by the point electron. According to present-day relativity theory, when a relativistic transformation is made that involves spin 1/2 particles, this transformation can cause a change in the spatial orientation of the spin vectors, but it is not assumed to cause any change in the spin energy of the particle.

    Google Scholar 

  3. See, for example, The Principle of Relativity, Dover Publications, Inc., New York, page 69.

    Google Scholar 

  4. See Ref. 1, page 116.

    Google Scholar 

  5. C. W. Berenda, Phys. Rev. 62, 280 (1942).

    Google Scholar 

  6. Henri Arzeliès, Relativistic Kinematics, Pergamon Press, Oxford (1966), Chapter IX.

    Google Scholar 

  7. H. J. Hay, J. P. Schiffer, T. E. Cranshaw, and P. A. Egelstaff, Phys. Rev. Lett. 4, 165 (1960).

    Google Scholar 

  8. D. C. Champeney and P. B. Moon, Proc. Phys. Soc. (London) A77, 350 (1960)

    Google Scholar 

  9. D. C. Champeney, G. R. Isaak, and A. M. Khan, ibid. A85, 583 (1965).

    Google Scholar 

  10. R. V. Pound and G. A. Rebka, Jr., Phys. Rev. Lett. 4, 274 (1960).

    Google Scholar 

  11. C. W. Sherwin, Phys. Rev. 120, 17 (1960).

    Google Scholar 

  12. C. Møller, The Theory of Relativity, Oxford Univ. Press, London (1952); see page 318, Eq. (42) and the accompanying discussion.

    Google Scholar 

  13. H. Dingle, Nature 144, 888 (1939) and 179, 866 (1957) and 180, 1275 (1957).

    Google Scholar 

  14. H. E. Ives, J. Opt. Soc. Am. 27, 305 (1937).

    Google Scholar 

  15. For example, see Max Born, Einstein's Theory of Relativity, Dover, New York (1962), pp. 269–273. Also see H. Goldstein, Classical Mechanics, Addison-Wesley, Cambridge, Mass. (1950), Chapter 6.

    Google Scholar 

  16. E. L. Hill, Phys. Rev. 69, 488 (1946); N. Rosen ibid. 70, 93 (1946);71, 54 (1947); B. Kursunoglu, Proc. Camb. Phil. Soc. 47, 177 (1951); H. Takeno, Prog. Theor. Phys. 7, 367 (1952); G. H. F. Gardner, Nature 170, 243 (1952); J. L. Synge, ibid. 170, 243 (1952); T. E. Phipps, ibid. 195, 67 (1962); J. G. Fletcher, ibid. 199, 994 (1963); J. L. Anderson, Principles of Relativity Physics, Academic Press, New York (1967), p. 183; E. L. Hill, Phys. Rev. 71, 318 (1947).

    Google Scholar 

  17. M. H. Mac Gregor, Lett. Nuovo Cimento 4, 211 (1970); Phys. Rev. D9, 1259 (1974), Appendix B.

    Google Scholar 

  18. G. Salzman and A. H. Taub, Phys. Rev. 95, 1969 (1954); J. E. Hogarth and W. H. McCrea, Proc. Carob. Phil. Soc. 48, 616 (1952); W. H. McCrea, Proc. Phil. Soc. A206, 562 (1951); G. C. Mc Vittie, ibid. A211, 295 (1952); also Ref. 4.

    Google Scholar 

  19. See Ref. 4, Sec. IX, [120], p. 237.

    Google Scholar 

  20. Arzeliès, Ref. 16, mentions that the special-relativistic stretching strains may not be real. We can extend this result by noting that the non-Euclidean geometry near the equator that is experienced by the moving observer may minimize the stresses that originate as centrifugal effects.

    Google Scholar 

  21. See Ref. 9, pages 220–221.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag

About this chapter

Cite this chapter

(1978). The relativistic mass increase for spinning systems. In: The Nature of the Elementary Particle. Lecture Notes in Physics, vol 81. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-08857-1_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-08857-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08857-8

  • Online ISBN: 978-3-540-35810-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics