Skip to main content

Proteomics-Based Strategies in Kinase Drug Discovery

  • Conference paper
  • First Online:
Sparking Signals

Part of the book series: Ernst Schering Foundation Symposium Proceedings ((SCHERING FOUND,volume 2007/3))

Abstract

Studies of drug action classically assess biochemical activity in settings which typically contain the isolated target only. Recent technical advances in mass spectrometry-based analysis of proteins have enabled the quantitative analysis of sub-proteomes and entire proteomes, thus initiating a departure from the traditional single gene—single protein—single target paradigm. Here, we review chemical proteomics-based experimental strategies in kinase drug discovery to analyse quantitatively the interaction of small molecule compounds or drugs with a defined sub-proteome containing hundreds of protein kinases and related proteins. One novel approach is based on `Kinobeads'—an affinity resin comprised of a cocktail of immobilized broad spectrum kinase inhibitors—to monitor quantitatively the differential binding of kinases and related nucleotide-binding proteins in the presence and absence of varying concentrations of a lead compound or drug of interest. Differential binding is detected by high throughput and sensitive mass spectroscopy techniques utilizing isobaric tagging reagents (iTRAQ), yielding quantitative and detailed target binding profiles. The method can be applied to the screening of compound libraries and to selectivity profiling of lead compounds directly against their endogenously expressed targets in a range of cell types and tissue lysates. In addition, the method can be used to map drug-induced changes in the phosphorylation state of the captured sub-proteome, enabling the analysis of signalling pathways downstream of target kinases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bantscheff M, Dumpelfeld B, Kuster B (2004) Femtomol sensitivity post-digest (18)O labeling for relative quantification of differential protein complex composition. Rapid Commun Mass Spectrom 18:869–876

    Article  PubMed  CAS  Google Scholar 

  • Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S, Mathieson T, Perrin J, Raida M, Rau C, Reader V, Sweetman G, Bauer A, Bouwmeester T, Hopf C, Kruse U, Neubauer C, Ramsden N, Rick J, Kuster B, Drewes G (2007) A quantitative chemical proteomics approach reveals novel modes of action of clinical ABL kinase inhibitors. Nat Biotechnol 25:1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369:756–758

    Article  PubMed  CAS  Google Scholar 

  • Burdine L, Kodadek T (2004) Target identification in chemical genetics: the (often) missing link. Chem Biol 11:593–597

    Article  PubMed  CAS  Google Scholar 

  • Cohen P (2002) Protein kinases--the major drug targets of the twenty-first century? Nat Rev Drug Discov 1:309–315

    Article  PubMed  CAS  Google Scholar 

  • Darvas F, Dorman G, Krajcsi P, Puskas LG, Kovari Z, Lorincz Z, Urge L (2004) Recent advances in chemical genomics. Curr Med Chem 11:3119–3145

    PubMed  CAS  Google Scholar 

  • Daub H (2005) Characterisation of kinase-selective inhibitors by chemical proteomics. Biochim Biophys Acta 1754:183–190

    PubMed  CAS  Google Scholar 

  • Ding S, Wu TY, Brinker A, Peters EC, Hur W, Gray NS, Schultz PG (2003) Synthetic small molecules that control stem cell fate. Proc Natl Acad Sci U S A 100:7632–7637

    Article  PubMed  CAS  Google Scholar 

  • Dubrovska A, Souchelnytskyi S (2005) Efficient enrichment of intact phosphorylated proteins by modified immobilized metal-affinity chromatography. Proteomics 5:4678–4683

    Article  PubMed  CAS  Google Scholar 

  • Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M, Moon RT, Teo JL, Kim HY, Moon SH, Ha JR, Kahn M (2004) A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci USA 101:12682–12687

    Article  PubMed  CAS  Google Scholar 

  • Fabian MA, Biggs WH III, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lelias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ (2005) A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 23:329–336

    Article  PubMed  CAS  Google Scholar 

  • Fields S (2001) Proteomics. Proteomics in genomeland. Science 291:1221–1224

    Article  PubMed  CAS  Google Scholar 

  • Fliri AF, Loging WT, Thadeio PF, Volkmann RA (2005) Analysis of drug-induced effect patterns to link structure and side effects of medicines. Nat Chem Biol 1:389–397

    Article  PubMed  CAS  Google Scholar 

  • Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100:6940–6945

    Article  PubMed  CAS  Google Scholar 

  • Godl K, Wissing J, Kurtenbach A, Habenberger P, Blencke S, Gutbrod H, Salassidis K, Stein-Gerlach M, Missio A, Cotten M, Daub H (2003) An efficient proteomics method to identify the cellular targets of protein kinase inhibitors. Proc Natl Acad Sci USA 100:15434–15439

    Article  PubMed  CAS  Google Scholar 

  • Graves PR, Kwiek JJ, Fadden P, Ray R, Hardeman K, Coley AM, Foley M, Haystead TA (2002) Discovery of novel targets of quinoline drugs in the human purine binding proteome. Mol Pharmacol 62:1364–1372

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  PubMed  CAS  Google Scholar 

  • Hall SE (2006) Chemoproteomics-driven drug discovery: addressing high attrition rates. Drug Discov Today 11:495–502

    Article  PubMed  CAS  Google Scholar 

  • Hantschel O, Superti-Furga G (2004) Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat Rev Mol Cell Biol 5:33–44

    Article  PubMed  CAS  Google Scholar 

  • Harding MW, Galat A, Uehling DE, Schreiber SL (1989) A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341:758–760

    Article  PubMed  CAS  Google Scholar 

  • Haystead TA (2006) The purinome, a complex mix of drug and toxicity targets. Curr Top Med Chem 6:1117–1127

    Article  PubMed  CAS  Google Scholar 

  • Huber LA (2003) Is proteomics heading in the wrong direction? Nat Rev Mol Cell Biol 4:74–80

    Article  PubMed  CAS  Google Scholar 

  • Knight ZA, Shokat KM (2005) Features of selective kinase inhibitors. Chem Biol 12:621–637

    Article  PubMed  CAS  Google Scholar 

  • Knockaert M, Gray N, Damiens E, Chang YT, Grellier P, Grant K, Fergusson D, Mottram J, Soete M, Dubremetz JF, Le RK, Doerig C, Schultz P, Meijer L (2000) Intracellular targets of cyclin-dependent kinase inhibitors: identification by affinity chromatography using immobilised inhibitors. Chem Biol 7:411–422

    Article  PubMed  CAS  Google Scholar 

  • Kowanetz K, Crosetto N, Haglund K, Schmidt MH, Heldin CH, Dikic I (2004) Suppressors of T-cell receptor signaling Sts-1 and Sts-2 bind to Cbl and inhibit endocytosis of receptor tyrosine kinases. J Biol Chem 279:32786–32795

    Article  PubMed  CAS  Google Scholar 

  • Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M (2005) Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308:1472–1477

    Article  PubMed  CAS  Google Scholar 

  • Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJ (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886

    Article  PubMed  CAS  Google Scholar 

  • Lowe CR, Harvey MJ, Craven DB, Dean PD (1973) Some parameters relevant to affinity chromatography on immobilized nucleotides. Biochem J 133:499–506

    PubMed  CAS  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  PubMed  CAS  Google Scholar 

  • Morandell S, Stasyk T, Grosstessner-Hain K, Roitinger E, Mechtler K, Bonn GK, Huber LA (2006) Phosphoproteomics strategies for the functional analysis of signal transduction. Proteomics 6:4047–4056

    Article  PubMed  CAS  Google Scholar 

  • Morphy R, Kay C, Rankovic Z (2004) From magic bullets to designed multiple ligands. Drug Discov Today 9:641–651

    Article  PubMed  CAS  Google Scholar 

  • Moser K, White FM (2006) Phosphoproteomic analysis of rat liver by high capacity IMAC and LC-MS/MS. J Proteome Res 5:98–104

    Article  PubMed  CAS  Google Scholar 

  • Nuhse TS, Peck SC (2006) Peptide-based phosphoproteomics with immobilized metal ion chromatography. Methods Mol Biol 323:431–436

    PubMed  Google Scholar 

  • Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  PubMed  CAS  Google Scholar 

  • Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262

    Article  PubMed  CAS  Google Scholar 

  • Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck AJ (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76:3935–3943

    Article  PubMed  CAS  Google Scholar 

  • Rappsilber J, Ryder U, Lamond AI, Mann M (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res 12:1231–1245

    Article  PubMed  CAS  Google Scholar 

  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  PubMed  CAS  Google Scholar 

  • Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23:94–101

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5:4–15

    Article  PubMed  CAS  Google Scholar 

  • Szardenings K, Li B, Ma L, Wu M (2004) Fishing for targets: novel approaches using small molecule baits. Drug Discovery Today: Technologies 1:9–15

    Article  CAS  Google Scholar 

  • Vella F, Ferry G, Delagrange P, Boutin JA (2005) NRH:quinone reductase 2: an enzyme of surprises and mysteries. Biochem Pharmacol 71:1–12

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Li R, Du D, Zhang C, Yuan H, Zeng R, Chen Z (2006) Proteomic analysis reveals novel molecules involved in insulin signaling pathway. J Proteome Res 5:846–855

    Article  PubMed  CAS  Google Scholar 

  • Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD (2007) Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer 7:345–356

    Article  PubMed  CAS  Google Scholar 

  • Wissing J, Godl K, Brehmer D, Blencke S, Weber M, Habenberger P, Stein-Gerlach M, Missio A, Cotten M, Muller S, Daub H (2004) Chemical proteomic analysis reveals alternative modes of action for pyrido[2,3-d]pyrimidine kinase inhibitors. Mol Cell Proteomics 3:1181–1193

    Article  PubMed  CAS  Google Scholar 

  • Yang TT, Xiong Q, Graef IA, Crabtree GR, Chow CW (2005) Recruitment of the extracellular signal-regulated kinase/ribosomal S6 kinase signaling pathway to the NFATc4 transcription activation complex. Mol Cell Biol 25:907–920

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA, White FM (2005) Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics 4:1240–1250

    Article  PubMed  CAS  Google Scholar 

  • Zieske LR (2006) A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. J Exp Bot 57:1501–1508

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Drewes .

Editor information

G. Baier B. Schraven U. Zügel A. von Bonin

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this paper

Cite this paper

Bantscheff, M., Hopf, C., Kruse, U., Drewes, G. (2008). Proteomics-Based Strategies in Kinase Drug Discovery. In: Baier, G., Schraven, B., Zügel, U., von Bonin, A. (eds) Sparking Signals. Ernst Schering Foundation Symposium Proceedings, vol 2007/3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2789_2007_060

Download citation

Publish with us

Policies and ethics