Skip to main content

Modern Imaging Techniques as a Window to Prehistoric Auditory Worlds

  • Chapter
  • First Online:
Insights from Comparative Hearing Research

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 49))

Abstract

Direct evidence regarding the evolution of vertebrate hearing is available only through the examination of fossils. The fossilized bony anatomy of the middle ear and otic capsule can provide information about auditory adaptations present in extinct animals, which can in turn be used to infer hearing capability in these taxa and to trace the evolutionary history of hearing. However, this internal anatomy is rarely visible in fossils. Historically, fortuitously broken or incomplete specimens, or destructive serial sectioning techniques, have been the only ways in which ear structures could be reconstructed. Modern nondestructive X-ray microcomputed-tomographic (μCT) approaches avoid this problem and allow ear morphology to be assessed in many more taxa, as virtually any three-dimensionally preserved skull can be analyzed reproducibly. This chapter reviews advances in our understanding of vertebrate hearing evolution that have occurred since the application of this imaging technology. In addition to insights gained from the analysis of key fossils, μCT also allows inferences to be made regarding the auditory and vestibular systems of extinct taxa through quantitative analyses of the ear regions of living species. Problems affecting μCT analyses of fossils are discussed and the authors comment on the outlook for future hearing-related μCT research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Hospitaleche, C. Márquez, G., Pérez, M., Rosato, V., & Cione, A. L. (2011). Lichen bioerosion on fossil vertebrates from the Cenozoic of Patagonia and Antarctica. Ichnos, 18, 1–8.

    Google Scholar 

  • Allin, E. F., & Hopson, J. A. (1992). Evolution of the auditory system in Synapsida (“mammal-like reptiles” and primitive mammals) as seen in the fossil record. In D. B. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 587–614). New York: Springer-Verlag.

    Google Scholar 

  • Anderson, J. S., Carroll, R. L., & Rowe, T. L. (2003). New information on Lethiscus stocki (Tetrapoda: Lepospondyli: Aistopoda) from high-resolution computed tomography and a phylogenetic analysis of Aistopoda. Canadian Journal of Earth Sciences, 40, 1071–1083.

    Google Scholar 

  • Balanoff, A. M., Xu, X., Kobayashi, Y., Matsufune, Y., & Norell, M. A. (2009). Cranial osteology of the theropod dinosaur Incisivosaurus gauthieri (Theropoda: Oviraptorosaria). American Museum Noviatates, 3651, 1–35.

    Google Scholar 

  • Baveye, P. C., Laba, M., Otten, W., Grinev, D., Bouckaert, L., Dello Sterpaio, P., Goswami, R. R., Hu, Y., Liu, J., Mooney, S., Pajor, R., Sleutel, S., Tarqui, A., Wang, W., Wei, Q., & Sezgin, M. (2010). Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data. Geoderma, 157, 51–63.

    Google Scholar 

  • Behrensmeyer, K. (1988). Vertebrate preservation in fluvial channels. Palaeogeography, Palaeoclimatology, Palaeoecology, 63, 183–199.

    Google Scholar 

  • Blumstein, D. T. (1997). Does sociality drive the evolution of communicative complexity? A comparative test with ground-dwelling sciurid alarm calls. The American Naturalist, 150, 179–200.

    CAS  PubMed  Google Scholar 

  • Boyd, A. A., & Motani, R. (2008). Three-dimensional re-evaluation of the deformation removal technique based on “jigsaw puzzling.” Palaeontologia Electronica, 11.2.7A. Retrieved from http://palaeo-electronica.org/2008_2/131/index.html

  • Brazeau, M. D., & Ahlberg, P. E. (2006). Tetrapod-like middle ear architecture in a Devonian fish. Nature, 439, 318–321.

    CAS  PubMed  Google Scholar 

  • Briggs, D. E. G. (2003). The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Sciences, 31, 275–301.

    CAS  Google Scholar 

  • Brochu, C. A. (2003). Osteology of Tyrannosaurus rex: Insights from a nearly complete skeleton and high-resolution computed tomographic analysis of the skull. Journal of Vertebrate Paleontology, 22(4, Supplement), 1–138.

    Google Scholar 

  • Brown, C. H., & Waser, P. M. (1984). Hearing and communication in blue monkeys (Cercopithecus mitis). Animal Behaviour, 32, 66–75.

    Google Scholar 

  • Bruns, V. (1980). Basilar membrane and its anchoring system in cochlea of the greater horseshoe bat. Anatomy and Embryology, 1616, 29–50.

    Google Scholar 

  • Bruns, V., & Schmieszek, E. (1980). Cochlear innervation in the greater horseshoe bat: Demonstration of an acoustic fovea. Hearing Research, 3, 27–43.

    CAS  PubMed  Google Scholar 

  • Bruns, V, Fiedler, J., & Kraus H.-J. (1983). Structural diversity of the inner ear of bats. Myotis, 21, 52–60.

    Google Scholar 

  • Butler, R. J., Barrett, P. M., Nowbath, S., & Upchurch, P. (2009). Estimating the effects of sampling biases on pterosaur diversity patterns: Implications for hypotheses of bird/pterosaur competitive replacement. Paleobiology, 35, 432–446.

    Google Scholar 

  • Clack, J. A. (2002). Gaining ground: The origin and evolution of tetrapods. Bloomington IN: Indiana University Press.

    Google Scholar 

  • Clack, J. A., Ahlberg P. E., Finney, S. M., Domínguez Alonso, P., Robinson, J., & Ketcham, R. A. (2003). A uniquely specialised ear in a very early tetrapod. Nature, 425, 65–69.

    CAS  PubMed  Google Scholar 

  • Clément, G., & Ahlberg, P. E. (2010). The endocranial anatomy of the early sarcopterygian Powichthys from Spitsbergen, based on CT scanning. In D. K. Elliott, J. G. Maisey, X. Yu, & D. Miao (Eds.), Morphology, phylogeny and paleobiogeography of fossil fishes (pp. 363–377). Munich: Pfeil Verlag.

    Google Scholar 

  • Conroy, G. C., & Vannier, M. W. (1984). Noninvasive three-dimensional computer imaging of matrix-filled fossil skulls by high-resolution computed tomography. Science, 226, 456–458.

    CAS  PubMed  Google Scholar 

  • Coombs, S., & Montgomery, J. C. (1999). The enigmatic lateral line system. In R. R. Fay & A. N. Popper (Eds.), Comparative hearing: Fish and amphibians (pp. 319–362). New York: Springer-Verlag.

    Google Scholar 

  • Cox, C. B. (1962). A natural cast of the inner ear of a dicynodont. American Museum Novitates, 2116, 1–6.

    Google Scholar 

  • Currie, P. J., & Zhao, X.-J. (1993). A new troodontid (Dinosauria, Theropoda) braincase from the Dinosaur Park Formation (Campanian) of Alberta. Canadian Journal of Earth Sciences, 30, 2231–2246.

    Google Scholar 

  • deBraga, M., & Rieppel, O. (1997). Reptile phylogeny and the interrelationships of turtles. Zoological Journal of the Linnean Society, 120, 281–354.

    Google Scholar 

  • Domínguez Alonso, P., Milner, A. C., Ketcham, R. A., Cookson, M. J., & Rowe, T. B. (2004). The avian nature of the brain and inner ear of Archaeopteryx. Nature, 430, 666–669.

    Google Scholar 

  • Duke, P. J. (2000). Synchrotron radiation: Production and properties. Oxford: Oxford University Press.

    Google Scholar 

  • Echteler, S. M., Fay, R. R., & Popper, A. N. (1994). Structure of the mammalian cochlea. In R. R. Fay & A. N Popper (Eds.), Comparative hearing: Mammals (pp. 134–171). New York: Springer-Verlag.

    Google Scholar 

  • Ekdale, E. G. (2011). Morphological variation in the ear region of pleistocene elephantimorpha (Mammalia, Proboscidea) from central Texas. Journal of Morphology, 272, 452–464.

    PubMed  Google Scholar 

  • Ekdale, E. G., & Rowe. T. B. (2011). Morphology and variation within the bony labyrinth of zhelestids (Mammalia, Eutheria) and other therian mammals. Journal of Vertebrate Paleontology, 31, 658–675.

    Google Scholar 

  • Elzanowski, A., & Galton, P. M. (1991). Braincase of Enaliornis, an early Cretaceous bird from England. Journal of Vertebrate Paleontology, 11(1), 90–107.

    Google Scholar 

  • Evangelista, C. M., Mills, M., Siebeck, U. E., & Collin, S. P. (2010). A comparison of the external morphology of the membranous inner ear in elasmobranchs. Journal of Morphology, 271, 483–495.

    PubMed  Google Scholar 

  • Evans, L. T. (1936). The development of the cochlea in the gecko, with special reference to the cochlea–lagena ratio and its bearing on vocality and social behaviour. The Anatomical Record, 61, 187–201.

    Google Scholar 

  • Evans, D. C., Ridgely, R., & Witmer, L. M. (2009). Endocranial anatomy of lambeosaurine hadrosaurids (Dinosauria: Ornithischia): A sensorineural perspective on cranial crest function. The Anatomical Record, 292, 1315–1337.

    PubMed  Google Scholar 

  • Evans, S. E., Lally, C. Chure, D. C., Elder, A., & Maisano, J. A. (2005). A Late Jurassic salamander (Amphibia: Caudata) from the Morrison Formation of North America. Zoological Journal of the Linnean Society, 143, 599–616.

    Google Scholar 

  • Fay, R. R., & Megela Simmons, A. (1999). The sense of hearing in fishes and amphibians. In R. R. Fay & A. N. Popper (Eds.), Comparative hearing: Fish and amphibians (pp. 269–318). New York: Springer-Verlag.

    Google Scholar 

  • Fernández, M. S., Paulina Carabajal, A. P., Gasparini, Z., & Chong Díaz, G. (2011). A metriorhynchid crocodyliform braincase from Northern Chile. Journal of Vertebrate Paleontology, 31(2), 369–377.

    Google Scholar 

  • Fink, W. L., & Humphries, J. H. (2010). Morphological description of the extinct North American sucker Moxostoma lacerum (Ostariophysi, Catostomidae), based on high-resolution X-ray computed tomography. Copeia, 2010(1), 5–13.

    Google Scholar 

  • Fourie, S. (1974). The cranial morphology of Thrinaxodon liorhinus Seeley. Annals of the South African Museum, 65, 337–400.

    Google Scholar 

  • Fox, R. C., & Meng, J. (1997). An X-radiographic and SEM study of the osseous inner ear of multituberculates and monotremes (Mammalia): Impressions for mammalian phylogeny and evolution of hearing. Zoological Journal of the Linnean Society, 121, 249–291.

    Google Scholar 

  • Fritzsch, B. (1987). The inner ear of the coelacanth fish Latimeria has tetrapod affinities. Nature, 327, 153–154.

    CAS  PubMed  Google Scholar 

  • Fritzsch, B. (1999). Hearing in two worlds: Theoretical and actual adaptive changes of the aquatic and terrestrial ear for sound reception. In R. R. Fay & A. N. Popper (Eds.), Comparative hearing: Fish and amphibians (pp. 15–42). New York: Springer-Verlag.

    Google Scholar 

  • Gao, C.-L., Wilson, G. P., Luo, Z.-X., Maga, A. M., Meng, Q.-J., & Wang, X.-R. (2009). A new mammal skull from the Lower Cretaceous of China with implications for the evolution of obtuse angled molars and amphilestid eutriconodonts. Proceedings of the Royal Society of London B: Biological Sciences, 277, 237–246.

    Google Scholar 

  • Gardner, N. M., Holliday, C. M., & O’Keefe, F. R. (2010). The braincase of Youngina capensis (Reptilia, Diapsida): New insights from high-resolution CT scanning of the holotype. Palaeontologia Electronica, 13(3), 19A.

    Google Scholar 

  • Garrick, L. D., & Lang, J. W. (1977). Social signals and behaviors of adult alligators and crocodiles. American Zoologist, 17, 225–239.

    Google Scholar 

  • Garwood, R. (2010). Tomographic reconstruction of carboniferous arthropods. Unpublished doctoral thesis, Imperial College, London.

    Google Scholar 

  • Gleich, O., Dooling, R. J., & Manley, G. A. (2005). Audiogram, body mass, and basilar papilla length: Correlations in birds and predictions for extinct archosaurs. Naturwissenschaften, 92, 595–589.

    CAS  PubMed  Google Scholar 

  • Graybeal, A., Rosowski, J. R., Ketten, D. L., & Crompton, A. W. (1989). Inner-ear structure in Morganucodon, an Early Jurassic mammal. Zoological Journal of the Linnean Society, 96, 107–117.

    Google Scholar 

  • Habersetzer, J., & Storch, S. (1992). Cochlea size in extant Chiroptera and middle Eocene microchiropterans from Messel. Naturwissenschaften, 79, 462–466.

    Google Scholar 

  • Hopson, J. A. (1964). The braincase of the advanced mammal-like reptile Bienotherium. Postilla, 87, 1–30.

    Google Scholar 

  • Horovitz, I., Martin, T., Bloch, J., Ladevèze, S., Kurz, C., & Sánchez-Villagra, M. R. (2009). Cranial anatomy of the earliest marsupials and the origin of opossums. PLoS ONE, 4(12), e8278.

    PubMed Central  PubMed  Google Scholar 

  • Hullar, T. E. (2006). Semicircular canal geometry, afferent sensitivity, and animal behavior. The Anatomical Record A, 288A, 466–472.

    Google Scholar 

  • Hurum, J. H. (1998). The braincase of two Late Cretaceous Asian multituberculates studied by serial sections. Acta Palaeontologica Polonica, 43, 21–52.

    Google Scholar 

  • Kapoor, B. G., & Khanna, B. (2004). Handbook of ichthyology. New York: Springer-Verlag.

    Google Scholar 

  • Kemp, T. S. (1979). The primitive cynodont Procynosuchus: Functional anatomy of the skull and relationships. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 285, 73–122.

    Google Scholar 

  • Ketcham, R. A., & Carlson, W. D. (2001). Acquisition, optimization and interpretation of X-ray computed tomographic imagery: Applications to the geosciences. Computers & Geosciences, 27, 381–400.

    CAS  Google Scholar 

  • Ketten, D. R. (1992). The marine mammal ear: Specializations for aquatic audition and echolocation. In D. B. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 717–750). New York: Springer-Verlag.

    Google Scholar 

  • Ketten, D. R., & Wartzok, D. (1990). Three-dimensional reconstructions of the dolphin ear. In J. Thomas & R. Kastelein (Eds.), Sensory abilities of cetaceans (pp. 81–105). New York: Plenum Press.

    Google Scholar 

  • Kidwell, S. M. (1993). Influence of subsidence on the anatomy of marine siliciclastic sequences and on distribution of shell and bone beds. Journal of the Geological Society, London, 50, 165–167.

    Google Scholar 

  • Kirk, E. C., & Gosselin-Ildari, A. D. (2009). Cochlear labyrinth volume and hearing abilities in primates. The Anatomical Record, 292, 765–776.

    PubMed  Google Scholar 

  • Kley, N. J., Sertich, J. J. W., Turner, A. H., Krause, D. W., O'Connor, P. M., & Georgi, J. A. (2010). Craniofacial morphology of Simosuchus clarki (Crocodyliformes: Notosuchia) from the Late Cretaceous of Madagascar. Journal of Vertebrate Paleontology, 30 (6, Supplement), 13–98.

    Google Scholar 

  • Konishi, M. (1970). Comparative neurophysiological studies of hearing and vocalizations in songbirds. Journal of Comparative Physiology A, 66, 257–272.

    Google Scholar 

  • Köppl, C. (2009). Evolution of sound localisation in land vertebrates. Current Biology, 19, R635–R639.

    PubMed  Google Scholar 

  • Kundrát, M., & Janáček, J. (2007). Cranial pneumatization and auditory perceptions of the oviraptorid dinosaur Conchoraptor gracilis (Theropoda, Maniraptora) from the Late Cretaceous of Mongolia. Naturwissenschaften, 94, 769–778.

    PubMed  Google Scholar 

  • Ladevèze, S., Muizon, C. de, Colbert, M., & Smith, T. (2010). 3D computational imaging of the petrosal of a new multituberculate mammal from the Late Cretaceous of China and its paleobiologic inferences. Comptes Rendus Palevol, 9, 319–330.

    Google Scholar 

  • Ladich, F. (1999). Did auditory sensitivity and vocalization evolve independently in otophysan fishes? Brain, Behavior and Evolution, 53, 288–304.

    CAS  PubMed  Google Scholar 

  • Lane, J. A. (2010). Morphology of the braincase in the Cretaceous hybodont shark Tribodus limae (Chondrichthyes: Elasmobranchii), based on CT scanning. American Museum Novitates, 3681, 1–70.

    Google Scholar 

  • Laurin, M., & Reisz, R. R. (1995). A reevaluation of early amniote phylogeny. Zoological Journal of the Linnean Society, 113(2), 165–223.

    Google Scholar 

  • Lewis, E. R., & Narins, P. M. (1999). The acoustic periphery of amphibians: Anatomy and physiology. In R. R. Fay & A. N. Popper (Eds.), Comparative hearing: Fish and amphibians (pp. 101–154). New York: Springer-Verlag.

    Google Scholar 

  • Liem, K. F., Bemis, W., Walker, W. F., & Grande, L. (2005). Functional anatomy of the vertebrates: An evolutionary perspective (3rd ed.). Fort Worth, TX and New York: Harcourt College.

    Google Scholar 

  • Lipka, T. R., Therrien, F., Weishampel, D. B., Jamniczky, H. A., Joyce, W. G., Colbert, M. W., & Brinkman, D. B. (2006). A new turtle from the Arundel Clay facies (Potomac Formation, Early Cretaceous) of Maryland, U.S.A. Journal of Vertebrate Paleontology, 26(2), 300–307.

    Google Scholar 

  • Luo, Z.-X. (2001). Inner ear and its bony housing in tritylodonts and implications for evolution of mammalian ear. Bulletin of Museum of Comparative Zoology (Harvard University), 156, 81–97.

    Google Scholar 

  • Luo, Z.-X., & Ketten, D. R. (1991). CT scanning and computerized reconstructions of the inner ear of multituberculate mammals. Journal of Vertebrate Paleontology, 11, 220–228.

    Google Scholar 

  • Luo, Z.-X, & Eastman, E. R. (1995). Petrosal and inner ear of a squalodontoid whale: implications for the evolution of hearing in odontocetes. Journal of Vertebrate Paleontology, 15, 431–442.

    Google Scholar 

  • Luo, Z.-X., Crompton, A. W., & Lucas, S. G. (1995). Evolutionary origins of the mammalian promontorium and cochlea. Journal of Vertebrate Paleontology, 15, 113–121.

    Google Scholar 

  • Luo, Z.-X., Chen, P.-J., Li, G., & Chen, M. (2007). A new eutriconodont mammal and evolutionary development of early mammals. Nature, 446, 288–293.

    CAS  PubMed  Google Scholar 

  • Luo, Z.-X., Ruf, I., Schultz, J. A., & Martin, T. (2011a). Fossil evidence on evolution of inner ear cochlea in Jurassic mammals. Proceedings of Royal Society B: Biological Sciences, 278, 28–34.

    Google Scholar 

  • Luo, Z.-X., Yuan, C.-X., Meng, G.-J., & Ji, G. (2011b). A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature, 476, 442–445.

    CAS  PubMed  Google Scholar 

  • Lyson, T. R., Bever, G. S., Bhullar, B.-A. S., Joyce, W. G., & Gauthier, J. A. (2010). Transitional fossils and the origin of turtles. Biology Letters, 23(6), 830–833.

    Google Scholar 

  • Macrini, T. E., Flynn, J. J., Croft, D. A., & Wyss, A. R. (2010). Inner ear of a notoungulate placental mammal: Anatomical description and examination of potentially phylogenetically informative characters. Journal of Anatomy, 216, 600–610.

    PubMed  Google Scholar 

  • Maddin, H. C., Olori, J. C., & Anderson, J. S. (2011). A redescription of Carrolla craddocki (Lepospondyli: Brachystelechidae) based on high-resolution CT, and the impacts of miniaturization and fossoriality on morphology. Journal of Morphology, 272(6), 722–743.

    PubMed  Google Scholar 

  • Maisey, J. G. (2001a). Remarks on the inner ear of elasmobranchs and its interpretation from skeletal labyrinth morphology. Journal of Morphology, 250, 236–264.

    CAS  PubMed  Google Scholar 

  • Maisey, J. G. (2001b). CT-scan reveals new cranial features in Devonian chondrichthyan “Cladoduswildungensis. Journal of Vertebrate Paleontology, 21(4), 807–810.

    Google Scholar 

  • Maisey, J. G., & Anderson, M. E. (2001). A primitive chondrichthyan braincase from the Early Devonian of South Africa. Journal of Vertebrate Paleontology, 21(4), 702–713.

    Google Scholar 

  • Maisey, J. G., & Lane, J. A. (2010). Labyrinth morphology and the evolution of low-frequency phonoreception in elasmobranchs. Compte Rendus Palevol, 9, 289–309.

    Google Scholar 

  • Manley, G. A. (1971). Some aspects of the evolution of hearing in vertebrates. Nature, 230, 506–509.

    CAS  PubMed  Google Scholar 

  • Manley, G. A. (1973). A review of some current concepts of the functional evolution of the ear in terrestrial vertebrates. Evolution, 26, 608–621.

    Google Scholar 

  • Manley, G. A. (1990). Peripheral hearing mechanisms in reptiles and birds. Berlin: Springer-Verlag.

    Google Scholar 

  • Marugán-Lobón, J., Chiappe, L. M., & Farke, A. A. (2013). The variability of inner ear orientation in saurischian dinosaurs: Testing the use of semicircular canals as a reference system for comparative anatomy. PeerJ, 1, e124.

    PubMed Central  PubMed  Google Scholar 

  • Meng, J., & Fox, R. C. (1995a). Evolution of the inner ear from non-therians to therians during the Mesozoic: Implications for mammalian phylogeny and hearing. In A.-L. Sun & Y. Wang (Eds.), Sixth symposium on Mesozoic terrestrial ecosystems and biota (pp. 235–242). Beijing: China Ocean Press.

    Google Scholar 

  • Meng, J., & Fox, R. C. (1995b). Therian petrosals from the Oldman and Milk River formations (Late Cretaceous), Alberta, Canada. Journal of Vertebrate Paleontology, 15, 122–130.

    Google Scholar 

  • Meng, J., & Wyss, A. R. (1995). Monotreme affinities and low-frequency hearing suggested by multituberculate ear. Nature, 377, 141–144.

    CAS  Google Scholar 

  • Miller, R. R. (1957). Utilization of X-rays as a tool in systematic zoology. Systematic Zoology, 6(1), 29–40.

    Google Scholar 

  • Milner, A. C., & Walsh, S. A. (2009). Avian brain evolution: New data from Palaeogene birds (Lower Eocene) from England. Zoological Journal of the Linnean Society, 155, 198–219.

    Google Scholar 

  • Müller, J., & Tsuji, L. A. (2007). Impedance-matching hearing in Paleozoic reptiles: Evidence of advanced sensory perception at an early stage of amniote evolution. PLoS ONE, (2)9, e889.

    Google Scholar 

  • Myrberg, A. A. (2001). The acoustical biology of elasmobranchs. Environmental Biology of Fishes, 60, 31–45.

    Google Scholar 

  • Narins, P. M., Feng, A. S., Wenyu, L., Schnitzler, H. U., Denzinger, A., Suthers, R. A., & Chunhe, X. (2004). Old World frog and bird vocalizations contain prominent ultrasonic harmonics. Journal of the Acoustical Society of America, 115, 110–113.

    Google Scholar 

  • O’Keefe, F. R., & Chiappe, L. M. (2011). Viviparity and K-selected life history in a Mesozoic marine reptile. Science, 333(6044), 870–873.

    PubMed  Google Scholar 

  • Olori, J. C. (2010). Digital endocasts of the cranial cavity and osseous labyrinth of the burrowing snake Uropeltis woodmasoni (Alethinophidia: Uropeltidae). Copeia, 1, 14–26.

    Google Scholar 

  • Olson, E. C. (1944). Origin of mammals based upon cranial morphology of the therapsid suborders. Geological Society of America, Special Papers, 55, 1–136.

    Google Scholar 

  • Pewkliang, B., Pring, A. A., & Brugger, J. (2008). The formation of precious opal: clues from the opalization of bone. The Canadian Mineralogist, 46, 139–149.

    CAS  Google Scholar 

  • Polcyn, M. (2008). Braincase evolution in plioplatecarpine mosasaurs. Journal of Vertebrate Paleontology, 28 (3, Supplement), 128A.

    Google Scholar 

  • Polcyn, M. (2010). Sensory adaptations in mosasaurs. Journal of Vertebrate Paleontology, 30 (3, Supplement), 146A.

    Google Scholar 

  • Popper, A. N., & Coombe, S. (1982). The morphology and evolution of the ear in actinopterygian fishes. American Zoologist, 22, 311–328.

    Google Scholar 

  • Popper, A. N., & Fay, R. R. (1999). The auditory periphery in fishes. In R. R. Fay & A. N. Popper (Eds.), Comparative hearing: Fish and amphibians (pp. 43–100). New York: Springer-Verlag.

    Google Scholar 

  • Pradel, A., Langer, M., Maisey, J. G., Geffard-Kuriyama, D., Cloetens, P., Janvier, P., & Tafforeau, P. (2009). Skull and brain of a 300-million-year-old chimaeroid fish revealed by synchrotron holotomography. PNAS, 106, 5224–5228.

    CAS  PubMed  Google Scholar 

  • Quiroga, J. C. (1979). The inner ear of two cynodonts (Reptilia – Therapsida) and some comments on the evolution of the inner ear from pelycosaurs to mammals. Gegenbaurs Morphologisches Jahrbuch Leipzig, 125, 178–190.

    CAS  Google Scholar 

  • Rieppel, O., & Maisano, J. A. (2007). The skull of the rare Malaysian snake Anomochilus leonardi Smith, based on high-resolution X-ray computed tomography. Zoological Journal of the Linnean Society, 149, 671–685.

    Google Scholar 

  • Robinson, J., Ahlberg, P. E., & Koentges, G. (2005). The braincase and middle ear region of Dendrepeton acadianum (Tetrapoda: Temnospondyli). Zoological Journal of the Linnean Society, 143, 577–597.

    Google Scholar 

  • Rodrigues, P. G., Ruf, I., & Schultz, C. L. (2013). Digital reconstruction of the otic region and inner ear of the non-mammalian cynodont Brasilitherium riograndensis (Late Triassic, Brazil) and its relevance to the evolution of the mammalian ear. Journal of Mammalian Evolution, DOI: 10.1007/s10914-012-9221-2 (published online in 2013).

  • Rogers, S. W. (1999). Allosaurus, crocodiles, and birds: Evolutionary clues from spiral computed tomography of an endocast. The Anatomical Record, 257, 162–173.

    CAS  PubMed  Google Scholar 

  • Rowe, T. B., Carlson, W. D., & Bottorff, W. W. (1994). Thrinaxodon: Digital atlas of the skull (CD-ROM). Austin: University of Texas Press.

    Google Scholar 

  • Ruf, I., Luo, Z.-X., Wible, J. R., & Martin, T. (2009). Petrosal anatomy and inner ear structure of the Late Jurassic mammal Henkelotherium and the ear region characters of basal therian mammals. Journal of Anatomy, 214, 679–693.

    PubMed  Google Scholar 

  • Ruf, I., Luo, Z.-X., & Martin, T. (2013). Re-investigation of the basicranium of Haldanodon exspectatus (Docodonta, Mammaliaformes). Journal of Vertebrate Paleontology, 33, 382–400.

    Google Scholar 

  • Sampson, S. D., & Witmer, L. M. (2007). Craniofacial anatomy of Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. Journal of Vertebrate Paleontology, 27, 32–102.

    Google Scholar 

  • Sanders, R. K., & Smith, D. K. (2005). The endocranium of the theropod dinosaur Ceratosaurus studied with computed tomography. Acta Palaeontologica Polonica, 50(3), 601–616.

    Google Scholar 

  • Sato, T. Wu, X.-C., Tirabasso, A., & Bloskie, P. (2011). Braincase of a polycotylid plesiosaur (Reptilia: Sauropterygia) from the Upper Cretaceous of Manitoba, Canada. Journal of Vertebrate Paleontology, 31, 313–329.

    Google Scholar 

  • Scofield, R. P., & Ashwell, K. W. S. (2009). Rapid somatic expansion causes the brain to lag behind: The case of the brain and behavior of New Zealand’s Haast’s Eagle (Harpagornis moorei). Journal of Vertebrate Paleontology, 29, 637–649.

    Google Scholar 

  • Sereno, P. C., Wilson, J. A., Witmer, L. M., Whitlock, J. A., Maga, A., Oumarou, I., & Rowe, T. A. (2007). Structural extremes in a Cretaceous dinosaur. PLoS ONE, 2, e1230.

    PubMed Central  PubMed  Google Scholar 

  • Sidor, C. A., & Hopson, J. A. (1998). Ghost lineages and “mammalness”: Assessing the temporal pattern of character acquisition in the Synapsida. Palaeobiology, 24(2), 254–273.

    Google Scholar 

  • Silcox, M. T., Bloch, J. I., Boyer, D. M., Godinot, M., Ryan, T. M., Spoor, F., & Walker A. (2009). Semicircular canal system in early primates. Journal of Human Evolution, 56, 315–327.

    PubMed  Google Scholar 

  • Sipla, J. S. (2007). The semicircular canals of birds and nonavian dinosaurs. Unpublished PhD thesis, Stony Brook University, New York.

    Google Scholar 

  • Smith, D. K., Zanno, L. E., Sanders, R. K., Deblieux, D. D., & Kirkland, J. I. (2011). New information on the braincase of the North American therizinosaurian (Theropoda, Maniraptora) Falcarius utahensis. Journal of Vertebrate Paleontology, 31, 387–404.

    Google Scholar 

  • Snitting, D. (2008). A redescription of the anatomy of the Late Devonian Spodichthys buetleri Jarvik, 1985 (Sarcopterygii, Tetrapodomorpha) from East Greenland. Journal of Vertebrate Paleontology, 28(3), 637–655.

    Google Scholar 

  • Spoor, F., Bajpai, S., Hussain, S. T., Kumar, K., & Thewissen, J. G. M. (2002). Vestibular evidence for the evolution of aquatic behaviour in early cetaceans. Nature, 417, 163–166.

    CAS  PubMed  Google Scholar 

  • Spoor, F., Garland, T., Krovitz, G., Ryan, T. M., Silcox, M. T., & Walker, A. (2007). The primate semicircular canal system and locomotion. Proceedings of the National Academy of Sciences of the USA, 104, 10808–10812.

    CAS  PubMed  Google Scholar 

  • Stensiö, E. (1963). The brain and the cranial nerves in fossil, lower craniate vertebrates. Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo. I Matematisk-Naturvidenskabelig Klasse, 13, 1–20.

    Google Scholar 

  • Sutton, M. D. (2008). Tomographic techniques for the study of exceptionally preserved fossils. Proceedings of the Royal Society of London B: Biological Sciences, 275, 1587–1593.

    Google Scholar 

  • Taylor, M. A. (1992). Functional anatomy of the head of the large aquatic predator Rhomaleosaurus zetlandicus (Plesiosauria, Reptilia) from the Toarcian (Lower Jurassic) of Yorkshire, England. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 335, 247–280.

    Google Scholar 

  • Taylor, M. P., Wedel, M. J., & Naish, D. (2009). Head and neck posture in sauropod dinosaurs inferred from extant animals. Acta Palaeontologica Polonica, 54, 213–220.

    Google Scholar 

  • Trueman, C. N., & Martill, D. M. (2002). The long-term survival of bone: The role of bioerosion. Archaeometry, 44, 371–382.

    CAS  Google Scholar 

  • Vaughn, T. A., Ryan, J. M., & Czapleuski, N. J. (2011). Mammalogy (5th ed.). Sudbury, MA: Jones and Bartlett.

    Google Scholar 

  • Walsh, S. A., & Knoll, M. A. (2011). Directions in palaeoneurology. Special Papers in Palaeontology, 86, 263–279.

    Google Scholar 

  • Walsh, S. A., & Milner, A. C. (2011). Halcyornis toliapicus (Aves: Lower Eocene, England) indicates advanced neuromorphology in Mesozoic Neornithes. Journal of Systematic Palaeontology, 9, 173–181.

    Google Scholar 

  • Walsh, S. A., Barrett, P. M., Milner, A. C., Manley, G., & Witmer, L. M. (2009). Inner ear anatomy is a proxy for deducing auditory capability and behaviour in reptiles and birds. Proceedings of the Royal Society of London B: Biological Sciences, 276, 1355–1360.

    Google Scholar 

  • Walsh, S. A., Iwaniuk, A. N., Knoll, M. A., Bourdon, E., Barrett, P. M., Milner, A. C., Nudds, R. L., Abel, R., & Dello Sterpaio, P. (2013). Avian cerebellar floccular fossa size is not a proxy for flying ability in birds. PLoS ONE 8(6): e67176.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, G., Hengyong, Y., & De Man, B. (2008). An outlook of x-ray CT research and development. Medical Physics, 35(3), 1051–1064.

    PubMed  Google Scholar 

  • Warrick, D. R., Bundle, M. W., & Dial, K. P. (2002). Bird maneuvering flight: Blurred bodies, clear heads. Integrative and Comparative Biology, 42, 141–148.

    CAS  PubMed  Google Scholar 

  • Weishampel, D. B. (1981). Acoustic analyses of potential vocalization in lambeosaurine dinosaurs (Reptilia: Ornithischia). Paleobiology, 7, 252–261.

    Google Scholar 

  • West, C. D. (1985). The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals. Journal of Acoustical Society of America, 77, 1091–1101.

    CAS  Google Scholar 

  • Witmer, L. M., & Ridgely, R. C. (2008). Structure of the brain cavity and inner ear of the centrosaurine ceratopsid Pachyrhinosaurus based on CT scanning and 3D visualization. In P. J. Currie (Ed.), A new horned dinosaur from an Upper Cretaceous bone bed in Alberta (pp. 117–144). Ottawa: National Research Council Research Press.

    Google Scholar 

  • Witmer, L. M., & Ridgely, R. C. (2009). New insights into brain, braincase, and ear region of tyrannosaurs (Dinosauria, Theropoda), with implications for sensory organisation and behavior. The Anatomical Record, 292, 1266–1296.

    PubMed  Google Scholar 

  • Witmer, L. M., Chatterjee, S., Franzosa, J., & Rowe, T. (2003). Neuroanatomy of flying reptiles and implications for flight, posture and behavior. Nature, 425, 950–953.

    CAS  PubMed  Google Scholar 

  • Witmer, L. M., Ridgely, R. C., Dufeau, D. L., & Semones, M. C. (2008). Using CT to peer into the past: 3D visualisation of the brain and ear regions of birds, crocodiles and nonavian dinosaurs. In H. Endo & R. Frey (Eds.), Anatomical imaging: Towards a new morphology (pp. 67–87). Tokyo: Springer-Verlag.

    Google Scholar 

  • Zhou, C.-F., Gao, K.-Q., Fox, R. C., & Du, X.-K. (2007). Endocranial morphology of psittacosaurs (Dinosauria: Ceratopsia) based on CT scans of new fossils from the Lower Cretaceous, China. Palaeoworld, 16, 285–293.

    Google Scholar 

Download references

Acknowledgments

We are grateful to Geoffrey Manley (Technische Universität München, Germany) for technical discussion of hearing research and Larry Witmer (Ohio University, USA) for discussion of interpretation of otic capsule morphology from X-ray CT scan data, and for making images of sauropsid inner ear segmentations available for inclusion here. This work was supported by NERC Small Grants NE/E008380/1 to PMB and NE/H012176/1 to S. A. Walsh, and NSF Grants DEB 0316558 EF0629959 to Humboldt Award to Z-X. Luo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stig A. Walsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walsh, S.A., Luo, ZX., Barrett, P.M. (2013). Modern Imaging Techniques as a Window to Prehistoric Auditory Worlds. In: Köppl, C., Manley, G., Popper, A., Fay, R. (eds) Insights from Comparative Hearing Research. Springer Handbook of Auditory Research, vol 49. Springer, New York, NY. https://doi.org/10.1007/2506_2013_32

Download citation

Publish with us

Policies and ethics