Skip to main content

Les nouvelles cibles thérapeutiques. Les nouvelles thérapeutiques ciblées

  • Conference paper
Cancer du sein

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Tronick SR, Aaronson SA (1995) Growth factor and signal transduction. Molecular basis of Cancer. Mendelsohn, Howley, Israel, Liotta. Eds Saunders, 117–40

    Google Scholar 

  2. Holbro T, Civenni G, Hynes NE (2003) The ErbB receptors and their role in cancer progression. Exp Cell Res 284: 99–110

    Article  PubMed  CAS  Google Scholar 

  3. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127–37

    Article  PubMed  CAS  Google Scholar 

  4. Nahta R, Hortobágyi GN, Esteva FJ (2003) Growth factor receptors in breast cancer: potential for therapeutic intervention. Oncologist 8: 5–17

    Article  PubMed  CAS  Google Scholar 

  5. Rowinsky EK (2001) Targeting signal transduction. Horiz Cancer Ther 2: 3–35

    Google Scholar 

  6. Olayioye MA, Neve RM, Lane HA et al. (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19: 3159–67

    Article  PubMed  CAS  Google Scholar 

  7. Graus-Porta D, Beerli RR, Daly JM et al. (1997) ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 16: 1647–55

    Article  PubMed  CAS  Google Scholar 

  8. Moscatello DK, Holgado-Madruga M, Emlet DR et al. (1998) Constitutive activation of phosphatidylinositol 3-kinase by a naturally occurring mutant epidermal growth factor receptor. J Biol Chem 273: 200–6

    Article  PubMed  CAS  Google Scholar 

  9. Wikstrand CJ, McLendon RE, Friedman AH et al. (1997) Cell surface localization and density of the tumor-associated variant of the epidermal growth factor receptor, EGFRvIII. Cancer Res 57: 4130–40

    PubMed  CAS  Google Scholar 

  10. Olapade-Olaopa EO, Moscatello DK, MacKay EH et al. (2000) Evidence for the differential expression of a variant EGF receptor protein in human prostate cancer. Br J Cancer 82: 186–94

    Article  PubMed  CAS  Google Scholar 

  11. Slamon DJ, Godolphin W, Jones LA et al. (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707–12

    PubMed  CAS  Google Scholar 

  12. Pupa SM, Menard S, Morelli D et al. (1993) The extracellular domain of the c-erbB-2 oncoprotein is released from tumor cells by proteolytic cleavage. Oncogene 8: 2917–23

    PubMed  CAS  Google Scholar 

  13. Christianson TA, Doherty JK, Lin YJ et al. (1998) NH2-terminally truncated HER-2/neu protein: relationship with shedding of the extracellular domain and with prognostic factors in breast cancer. Cancer Res 58: 5123–9

    PubMed  CAS  Google Scholar 

  14. Segatto O, King CR, Pierce JH et al. (1988) Different structural alterations upregulate in vitro tyrosine kinase activity and transforming potency of the erbB-2 gene. Mol Cell Biol 8: 5570–4

    PubMed  CAS  Google Scholar 

  15. Molina MA, Saez R, Ramsey EE et al. (2002) NH(2)-terminal truncated HER-2 protein but not full-length receptor is associated with nodal metastasis in human breast cancer. Clin Cancer Res 8: 347–53

    PubMed  CAS  Google Scholar 

  16. Colomer R, Montero S, Lluch A et al. (2000) Circulating HER2 extracellular domain and resistance to chemotherapy in advanced breast cancer. Clin Cancer Res 6: 2356–62

    PubMed  CAS  Google Scholar 

  17. Yamauchi H, O’Neill A, Gelman R et al. (1997)Prediction of response to antiestrogen therapy in advanced breast cancer patients by pretreatment circulating levels of extracellular domain of the HER-2/c-neu protein. J Clin Oncol 15: 2518–25

    PubMed  CAS  Google Scholar 

  18. Olayioye MA, Neve RM, Lane HA et al. (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19: 3159–67

    Article  PubMed  CAS  Google Scholar 

  19. Nicholson RI, Gee JM, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37(suppl 4): S9–15

    Article  PubMed  CAS  Google Scholar 

  20. Nahta R, Hortobágyi GN, Esteva FJ (2003) Growth factor receptors in breast cancer: potential for therapeutic intervention. Oncologist 8: 5–17

    Article  PubMed  CAS  Google Scholar 

  21. Xia W, Mullin RJ, Keith BR et al. (2002) Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene 21: 6255–63

    Article  PubMed  CAS  Google Scholar 

  22. Rusnak DW, Lackey K, Affleck K et al. (2001) The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther 1: 85–94

    PubMed  CAS  Google Scholar 

  23. Klohs WD, Fry DW, Kraker AJ (1997) Inhibitors of tyrosine kinase. Curr. Opin. Oncol, 9: 562–8

    PubMed  CAS  Google Scholar 

  24. Mendelsohn J Jeremiah Metzger Lecture (2000) Targeted cancer therapy Trans Am Clin Climatol Assoc 111: 95–111

    CAS  Google Scholar 

  25. Etassami A, Bourhis J (2000) Cetuximab: Anti EGF-R monoclonal antibody. Drug Fut 25: 895–9

    Google Scholar 

  26. Wu X, Rubin M, Fan Z et al. (1996) Involvement of p27 KIP1 in G1 arrest mediated by an anti-epidermal growth factor receptor monoclonal antibody. Oncogene, 12: 1397–403

    PubMed  CAS  Google Scholar 

  27. Peng D, Fan Z, Lu Y et al. (1996) Anti-epidermal growth factor receptor monoclonal antibody C225 upregulates p27Kip1 and induces G1 arrest in prostatic cancer cell line DU 145. Cancer Res, 56: 3666–9

    PubMed  CAS  Google Scholar 

  28. Ciardiello F, Damiano V, Bianco R et al. (1996) Antitumor activity of combined blockade of epidermal growth factor receptor and protein kinase A J Natl Cancer Inst, 88: 1770–6

    PubMed  CAS  Google Scholar 

  29. Perrotte P, Matsumoto T, Inoue K et al. (1999) Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transtional cell carcinoma growing in nude mice. Clin. Cancer. Res, 5: 257–65

    PubMed  CAS  Google Scholar 

  30. Ciardiello F, Bianco R, Damiano V et al. (2000) Antiangiogenic and antitumor activity of anti-epidermal growth factor receptor C-225 monoclo anbody in combination with vascular endothelial growth factor antisense ligonucleotide in human GEO colon cancer cells. Clin. Cancer. Res, 6: 3739–47

    PubMed  CAS  Google Scholar 

  31. Goldstein NI, Prewett M, Zuklys K et al. (1995) Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in human tumor xenograft model. Clin. Cancer. Res, 1: 1311–8

    PubMed  CAS  Google Scholar 

  32. Pewett M, Rockwell P, Rockwell RF et al. (1996) The biologic effects of C225, a chimeric monoclonal antibody to the EGFR, on human prostate carcinoma. J.Immunother.Tumor Immunol, 19: 419–27

    Google Scholar 

  33. Overholser JP, Prewett MC, Hooper AT et al. (2000) Epidermal growth factor receptor blockade by antibody IMC-C225 inhibts growth of a human pancreatic carcinoma xenograft in nude mice. Cancer, 89: 74–82

    Article  PubMed  CAS  Google Scholar 

  34. Fan Z, Lu Y, Wu X, Mendelsohn J (1994) Antibody-induced epidermal growth factor receptor dimerization mediates inhibition of autocrine proliferation of A431 squamous carcinoma cells J Biol Chem, 269: 27595–602

    PubMed  CAS  Google Scholar 

  35. Inoue K, Slaton JW, Perrotte P et al. (2000) Paclitaxel enhances the effects of the anti-epidermal growth factor receptor monoclonal antibody ImClone-C225 in nice with metastatic human bladder transitional cell carcinoma Clin Cancer Res, 6: 4874–84

    PubMed  CAS  Google Scholar 

  36. Bruns CJ, Harbison MT, Davis DW et al. (2000) Epidermal growth factor receptor blockade with C225 plus gencitabine results in regression of human pancreatic carcinoma growing orthopically in nude mice by antiangiogenic mechanisms. Clin Cancer Res, 6: 1936–48

    PubMed  CAS  Google Scholar 

  37. Milas L, Mason K, Hunter N et al. (2000) in vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody Clin Cancer Res, 6: 701–6

    PubMed  CAS  Google Scholar 

  38. Woodburn JR, Barker A J (1997) 4-anilinoquiinazolines-a potentiel new therapy for major human solid tumors overexpressing the EGF receptor Br J Cancer, 74: 213–568

    Google Scholar 

  39. Nicholson RI, Gee JMW, Barrow D et al. (1999) Endocrine resistant in breast cancer can involve a switch towards EGFR signalling pathways and a gain of sensitivity to an EGFR-selective tyrosine kinase inhibitor, ZD1839. Proc AACR-NCI-Meeting, Washington, DC, 7

    Google Scholar 

  40. Ciardiello F, Caputo R, Bianco R et al. (2000) Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD1839 (IRESSA), an epidermal growth factor receptor-sensitive tyrosine kinase inhibitor. Clin. Cancer. Res, 6: 2053–63

    PubMed  CAS  Google Scholar 

  41. Chan KC, Knox F, Woodburn JR et al. (2001) Blockage of growth factor receptors in ductal carcinoma in situ of the breast inhibts epithelial proliferation Br J Surg, 88: 412–8

    Article  PubMed  CAS  Google Scholar 

  42. Lawrence DS and Niu J (1998) Protein kinase inhibitors: the tyrosine specific protein kinases Pharmacol Ther, 77: 81–114

    Article  PubMed  CAS  Google Scholar 

  43. Cullinane C, Kleinschmidt M, Webster LK (2000) Antitumor activity of ZD 1839 (“IRESSA”) in combination with cisplatin in NIH3T3 cells expressing human epidermal growth factor receptor Proc Am Assoc Cancer Res, 41

    Google Scholar 

  44. Sirotnak FM, Zakowsky MF, Miller VA et al. (2000) Efficacy of cytotoxic agents againts human tumor xenografts is markedly enhanced by coadministration of ZD 1839 (IRESSA) an inhibitor of EGFR tyrosine kinase. Clin. Cancer Res 6: 4885–92

    PubMed  CAS  Google Scholar 

  45. Budillon A, DI Gennaro E, Barbarino M et al. (2000) ZD 1839, an epidermal growth factor receptor tyrosine kinase inhibitor, upregulates p27kip1 inducing G1 arrest and enhancing the antitumoreffect of interferon a Proc Am Assoc Cancer Res 41: 402

    Google Scholar 

  46. Ohmori T, Ao Y, Nishio K et al. (2000) Low dose cisplatin can modulate the sensitivity of human non-small cell lung carcinoma cells to EGFR tyrosine kinase inhibitor (ZD 1939, IRESSA) in vivo Proc Am Assoc Cancer Res 41: 482

    Google Scholar 

  47. Raben D, Helfrich B, Phistry M et al. (2000) ZD 1839 (Iressa) an EGFR-TK1, potentiates radiation/chemotherapy cytotoxicity in human non-small cell lung (NSCLC) cell lines. 11 th NCI-EORTC-AACR symposium on New drugs in cancer therapy Abs LB4, Amsterdam, November 7–10

    Google Scholar 

  48. William K, Telfer B, Stratford IJ et al. (2000) An evaluation of the EGFR tyrosine kinase inhibitor ZD1839 (Iressa) in combination with ionising radiation. Abs LB3, Amsterdam, November 7–10

    Google Scholar 

  49. Normano N, Campiglio M, De Luca A et al. (2001) Cooperative inhibitory effect of ZD1839 (Iressa) in combination with trastuzumab on human breast cancer cell growth Proc Am Assoc Cancer Res 42: 774

    Google Scholar 

  50. Anido J, Albanell J, Rojo F et al. (2001) Inhibition by ZD 1839 (Iressa) of epidermal growth factor (EGF) and heregulin induced signaling pathways in human breast cancer cells Proc Am Soc Clin Oncol 21: 1712

    Google Scholar 

  51. Moulder SL, Yakes FM, Bianco R et al. A rationale for the use of small molecule EGF receptor tyrosine kinase inhibitor against HER2/neu (erbB-2) overexpressing breast tumors cells Proc Am Assoc Cancer Res 42: 853, 20

    Google Scholar 

  52. Ciardiello F, Tortora G (2001) A novel approch in the treatment of cancer: targeting the epidermal growth factor receptor Clin Cancer Res 7: 2958–70

    PubMed  CAS  Google Scholar 

  53. Slichenmyer WJ, Fry DW (2001) Anticancer therapy targeting the ErbB family receptor tyrosine kinases. Seminars in Oncol 28(5): 67–79

    Article  CAS  Google Scholar 

  54. Allen LF, Lenehan PF, Eiseman IA et al. (2002) Potential benefits of the reversible Pan-erbB Inhibitor, CI-1033, in the Treatment of breast cancer. Seminars of Oncol 3(29) 11–21

    Google Scholar 

  55. Slichenmeyer W, Elliott WL, Fry DW CI-1033, a Pan-erbB tyrosine kinase inhibitor. Seminars of Oncol 5(16), 80–5

    Google Scholar 

  56. Perrin D, Halazy S, Hill B (1997) Inhibitors of Ras farneselylation: tomorrow’s anticancer agents? Bull Cancer 84(6): 635–42

    PubMed  CAS  Google Scholar 

  57. Rowinsky E.K, Windle JJ, Von Hoff D (1999) Ras protein farnesyltransferase: a strategic target for anticancer therapeutic development. J Clin Oncol, 11(17): 3631–52

    Google Scholar 

  58. Haluska P, Dy GK, and Adjei AA (2002) Farnesyl transferase inhibitor as anticancer agents Eur J Cancer, 38: 1685–700

    Article  PubMed  CAS  Google Scholar 

  59. Hahn SM, Bernhard E, McKenna G (2001) Farnesyltransferase inhibitors. Seminars in Oncol, 28(5), suppl 16: 86–93

    Article  CAS  Google Scholar 

  60. Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu.Rev.Biochem 65: 241–69

    Article  PubMed  CAS  Google Scholar 

  61. Clarke S (1992) Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem 61: 355–86

    PubMed  CAS  Google Scholar 

  62. Clarke S, Vogel JP, Deschenes RJ et al. (1988) Posttranslationnal modification of the Ha-ras oncogene protein: evidence for a third class of protein carboxyl methyltransferase Proc Natl Acad Sci USA 85: 4643–747

    PubMed  CAS  Google Scholar 

  63. Olson MF, Paterson HF, Marshalla CJ (1998) Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1. Nature, 394: 295–9

    Article  PubMed  CAS  Google Scholar 

  64. Armonstrong SA, Hannah VC, Goldstein JL et al. (1995) CAAX geranylgeranyl transferase transfers farnesyl as efficiently as geranylgeranyl to RhoB J Biol Chem 270: 7864–8

    Article  Google Scholar 

  65. Du W, Lebowitz PF, Prendergast GC et al. (1999) Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranyled RhoB. Mol Cell Biol 19: 1831–40

    PubMed  CAS  Google Scholar 

  66. Lebowitzn PF, Davide JP, Prendergast GC et al. (1995) Evidence that farnesyl-transferase inhibitors suppress Ras transformation by interfering with Rho activity Mol Cell Biol 15: 6613–22

    Google Scholar 

  67. Law BK, Norgaard P, and Moses HL (2000) Farnesyltransferase inhibitor induces rapid growth arrest and blocks p70s6K activation by multiple stimuli. J.Biol. Chem, 275: 10796–801

    Article  PubMed  CAS  Google Scholar 

  68. Jiang K, Coppola D, Crespo NC et al. (2000) The phosphoinositide 3-OH kinase/AKT2 pathway as a critical target for farnesyltransferase inhibitorinduced apoptosis. Mol Cell Biol 20: 139–48

    Article  PubMed  Google Scholar 

  69. Ashar HR, James L, Gray K et al. (2000) Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENPE with microtubules J Biol Chem 275: 30451–7

    Article  PubMed  CAS  Google Scholar 

  70. Lee J, Miyano T, Day Y et al. (2000) Specific regulation of CENP-E and kinetochores during meiosisI/meiosis II transition pig oocytes Mol Reprod Dev 56: 51–62

    Article  PubMed  CAS  Google Scholar 

  71. End DW, Smets G, Todd AV et al. (2001) Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res 61: 131–7

    PubMed  CAS  Google Scholar 

  72. Schellens JH, De Klerk GJ, Swart M et al. (2000) Phase I pharmacologic study with the novel farnesyl transferase inhibitor (FTI) R115777 Proc Am Soc Clin Oncol 19: 715

    Google Scholar 

  73. Zujewski J, Horak ID, Bol CJ et al. (2000) Phase I and pharmacokinetic study of farnesyl protein transferase inhibitor R115777 in advanced cancer J Clin Oncol 18: 927–41

    PubMed  CAS  Google Scholar 

  74. Nakagawa K, Yamamoto N, Nishio K et al. (2001) A phase I, pharmacokinetic (PK) and pharmacodynamic (PD) study of the farnesyl transferase inhibitor (FTI) R115777 in Japaness patients with advanced non-hematological malignancies Proc Am Soc Clin Oncol 20: 317

    Google Scholar 

  75. Punt CJ, Van Maanen L, Bol CJ et al. (2001) Phase I and pharmacokinetic study of the orally administered franesyl transferase inhibitor R115777 in patients with advanced solid tumors Anticancer Drug, 12: 193–7

    Article  CAS  Google Scholar 

  76. Patnik A, Eckhardt S, Itzbicka E et al. (2000) A phase I and pharmacokinetic study of the farnesyltransferase inhibitor, R115777 in combination with gemcitabine Proc Am Soc Clin Oncol, 19: 689

    Google Scholar 

  77. Liebes L, Hochster H, Speyer J et al. (2001) Enhanced myelosuppression of topotecan when combined with farnesyl transferase inhibitor R15777: a pase I and pharmacodynamic study Proc Am Soc Clin Oncol 20: 321

    Google Scholar 

  78. Verweij J, Kehrer DF, Planting AS et al. (2001) Phase I trial of irinotecan in combination with the farnesyl transferase inhibitor (FTI) R115777 Proc Am Soc Clin Oncol 20: 319

    Google Scholar 

  79. Schwartz G, Rowinsky EK, Rha SY et al. (2001) A phase I, pharmacokinetic, and biologic correlative study of R115777 and trastuzumab (herceptin) in patients with advanced cancer Proc Am Soc Clin Oncol 20: 322

    Google Scholar 

  80. Versyle C, Van Steenbergen W, Humblet Y et al. (2001) Phase I trial of 5-FU/LV in combination with farnesyltransferase inhibitor (FTI) R115777 Proc Am Soc Clin Oncol 20: 681

    Google Scholar 

  81. Adjei AA, Bruzek LM, Erlichman C et al. (2001) Combination studies with the farnesyl protein transferase inhibitor R115777 and chemotherapy agents. Eur J Cancer 37(suppl. 6): 792

    Google Scholar 

  82. Piccart-Gebhart MJ, Branle D, De Valeriola M et al. (2001) A phase I, clinical and pharmacokinetic (PK) trial of the farnesyl transferase inhibitor (FTI) R115777+docetaxel: a promising combination in patients (PTS) with solid tumors Proc Am Soc Clin Oncol 20: 318

    Google Scholar 

  83. Holden SN, Eckhardt SG, Fisher S et al. (2001) A phase I parmacokinetic (PK) and biological study of the farnesyl transferase inhibitor (FTI) R115777 and capecitabine in patients (PTS) with advanced solid malignancies. Proc Am Soc Clin Oncol 20: 316

    Google Scholar 

  84. Johnston SDR, Hickish T, Houston S et al. (2002) Efficacy and tolerability of two dosing regimens of R115777 (Zanestra), a farnesyl protein transferase inhibitor in patients with advanced breast cancer. Proc Am Soc Cancer Oncol 21: 138

    Google Scholar 

  85. Liu M, Bryant MS, Chen J et al. (1998) Antitumor activity of SCH66336, an orally bioavailable tricyclic inhibitor of farnesyl protein transferase, in human tumor xenograft models and wap-ras transgenic nice. Cancer Res 58:4947–56

    PubMed  CAS  Google Scholar 

  86. Ashar HR, James L, Gray K et al. (2001) The farnesyl transferase inhibitor SCH 66336 induces a G(2)->M or G(1)-> pause in sensitive human tumor cell lines. Exp Cell Res 262: 17–27

    Article  PubMed  CAS  Google Scholar 

  87. Glass TL, Liu M, Yung WK et al. (2000) Inhibition of cell growth in human glioblastoma cell lines by farnesyltransferase inhibitor SCH66336. Neuro-Oncol 2: 151–8

    Article  PubMed  CAS  Google Scholar 

  88. Reichert A, Heisterkamp N, Daley GQ et al. (2001) Treatment of Bcr/Ablpositive acute lymphoblastic leukemia in P190 transgenic mice with the farnesyl transferase inhibitor SCH 66336 Blood 97: 1399–403

    Article  PubMed  CAS  Google Scholar 

  89. Adjei AA, Erlichman C, Davis JN et al. (2000) Phase I trial of the farnesyl transferase inhibitor SCH66336: evidence for biological and clinical activity. Cancer. Res 60: 1871–7

    PubMed  CAS  Google Scholar 

  90. Eskens FA, Awada A, Cutler DL et al. (2001) Phase I and pharmacokinetic study of oral farnesyl transferase inhibitor SCH66336 given twice of daily to patients with advanced solid tumors. J Clin Oncol 19: 1167–75

    PubMed  CAS  Google Scholar 

  91. Kies MS, Clayman GL, El Naggar AK et al. (2001) Induction therapy with SCH66336, a farnesyltransferase inhibitor, in squamous cell carcinoma (SCC) of the head and neck. Proc Am Soc Clin Oncol 20: 896

    Google Scholar 

  92. Hurwitz HI, Amado R et al. (2000) Phase I pharmacokinetic trial of the farnesyl transferase inhibitor SCH66336 plus gencitabine in advanced cancers. Proc Am Soc Clin Oncol 19: 717

    Google Scholar 

  93. Khuri FR, Glisson BS, Prager D et al. (2000) Phase I study of the farnesyl transferase inhibitor (FTI) SCH66336 with paclitaxel in solid tumors: dose finding, pharmacikinetics, efficacy/safety. Proc Am Soc Clin Oncol 19: 799.

    Google Scholar 

  94. O’Dwyer PJ, Stevenson JP, Gallagher E et al. (1998) Phase I/pharmacokinetic/pharmacodynamic trial of Raf-1 antisense ODN (ISIS 5132). Proc Am Soc Clin Oncol, 17: 810

    Google Scholar 

  95. Holmlund J, Nemunaitis J, Schiller A et al. (1998) Phase I trial of c-Raf antisense oligonucleotide ISIS 5132 (CGP 69846A) by 21 day continuous intravenous infusion (CIV) in patiernts with advanced cancer. Proc Am Soc Clin Oncol 17: 811

    Google Scholar 

  96. Holmlund J, Rudin CM, Mani S et al. (1999) phase I trial of ISIS 5132/ODN 69846A a 20-mer phosphothiate antisense oligonucleotide inhibitor of c-Raf kinase administered by 24 hours weekly intravenous (IV) infusion to patients with advanced cancer. Proc Am Soc Clin Oncol 18: 605

    Google Scholar 

  97. Lyons, J F, Wilhelm, S, Hibner, B and Bollag, G (2001) Discovery of a novel Raf kinase inhibitor. Endocr Rel Cancer, 8: 219–25

    Article  CAS  Google Scholar 

  98. Awada, A, Hendlisz, A, Gil, T et al. (2001) A clinical, pharmacokinetic and pharmacodynamic Phase I study of the raf kinase inhibitor BAY 43-9006 in patients with advanced solid tumours. Clin Cancer Res 7 3768s

    Google Scholar 

  99. Mitchell DY, Reid JM, Parchment RE et al. (2002) Pharmacokinetics (PK) and pharmacodynamics (PD) of the oral MEK inhibitor, CI-1040, following multiple dose administration to patients with advanced cancer. Proc Am Soc Cancer Oncol 21: 320

    Google Scholar 

  100. LoRusso PM, Adjei AA, Meyer MB et al. (2002) A phase I clinical and pharmacokinetic evaluation of the oral MEK inhibitor, CI-1040, administered for 21 consecutive days, repeated every 4 weeks in patients with advanced cancer. Proc Am Soc Cancer Oncol 21: 321

    Google Scholar 

  101. Berrie PC (2001) Phosphoinositide 3-Kinase inhibition in cancer treatment. Expert Opin Investg Drugs 10(6): 1085–98

    Article  CAS  Google Scholar 

  102. Cantley LC, Nell BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci 96: 4240–5

    Article  PubMed  CAS  Google Scholar 

  103. Mills GB, LU Y, Fang X et al. (2001) The role of genetic abnormalities of PTEN and the phospatidylinositol 3-kinase pathway in breast cancer and ovarian tumoregenesis, prognosis and therapy. Seminars in Oncology. 28:125–41

    Article  PubMed  CAS  Google Scholar 

  104. Datta SR, Brunet A Greenberg M (1999) Cellular survival: a play in three Akts. Genes and Development. 13: 2905–27

    Article  PubMed  CAS  Google Scholar 

  105. Leslie NR, Downes CP (2002) PTEN: the down side of PI3 kinase signalling. Cellular Signalling. 14: 285–95

    Article  PubMed  CAS  Google Scholar 

  106. Starink TM, van der Veen JP, Arweert F et al. (1986) The Cowdven syndrome: A clinical and genetic study in 21 patients Clin Genet 29: 222–3

    Article  PubMed  CAS  Google Scholar 

  107. Wymann MP, Bulgarelli-Leva G, Zvelebil MJ et al. (1996) Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction. Mol Cell Biol 16: 1722–33

    PubMed  CAS  Google Scholar 

  108. Meyers R, Cantley LC (1997) Cloning and characterisation of a wortmannin-sensitive human phosphatidylinositol 4-kinase. J Biol Chem, 272: 4384–90.

    Article  PubMed  CAS  Google Scholar 

  109. Dennis PB, Fumagalli S, and Thomas G (1999) Taget of rapamycin (TOR): balancing the opposing forcs of protein synthesis and degradation. Current Opinion in Genetics and Development. 9: 49–54

    Article  PubMed  CAS  Google Scholar 

  110. Schmelze T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103: 253–62

    Article  Google Scholar 

  111. Alexandre J, Raymond E, Armand JP (1999) Rapamycine et le CCI-77. Bull Cancer 86(10): 808–11

    PubMed  CAS  Google Scholar 

  112. Baker H, Sidorowicz A, Seghal SN et al. (1975) Rapamycin (AY-22, 989), a new antifongal antibiotic: III. in vitro and in vivo evaluation. J Antibiot (Tokyo), 31: 539–45

    Google Scholar 

  113. Seghal SN, Baker H, Vezina C (1975) Rapamycin (AY-22,989), a new antifungal antibiotic: II. Fermentation, isolation, and characterization. J Antibiot (Tokyo), 28: 727–73

    Google Scholar 

  114. Vezina C, Kudelski A, Seghal SN (1975) Rapamycin (AY-22,989), a new antifungal antibiotic: I Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 28: 721–6

    CAS  Google Scholar 

  115. Seghal SN (1995) Rapamune (sirolimus, rapamycin) (AY-22,989): An overview and mechanism of action. Ther Drug Monit 17: 660–5

    Article  Google Scholar 

  116. Eng CP, Seghal SN, Vezina C (1984) Activity of rapamycin (AY-22, 989) against transplanted tumors. J Antibiot (Tokyo) 37: 1231–7

    CAS  Google Scholar 

  117. Muthukkumar S, Ramesh TM, Bondada S (1995) Rapamycin, a potent immunosuppressive drug, causes programmed cell death in B lymphoma. Transplantation 60: 264–70

    PubMed  CAS  Google Scholar 

  118. Seufferlein T, Rozemgurt E (1996) Rapamycin inhibits constitutive p70s6k phosphorylation, cell proliferation, and colony formation in small cell lung cancer cells. Cancer Res 56: 3895–7

    PubMed  CAS  Google Scholar 

  119. Gibbons JJ, Discafani C, Peterson R et al. (2000) The effect of CCI-779, a novel macrolide anti-tumor agent, on the growth of human tumors cells in vitro and in nude mouse xenograft in vivo. Proc Am Assoc Cancer Res 40: 301

    Google Scholar 

  120. Hidalgo M, Rowinsky E, Erlichman C et al. (2000) Phase I and pharmacologic study of CCI-779, a cell cycle inhibitor. 11th NCI-EORTC-AACR symposium on new drugs in cancer therapy

    Google Scholar 

  121. Raymond E, Alexandre J, Depenbrock H et al. (2000) CCI-779 a ester analog of rapamycin that interact with PTEN/PI3 Kinase pathways: A phase I study utilising a weekly intravenous schedule. 11th NCI-EORTC-AACR symposium on new drugs in cancer therapy

    Google Scholar 

  122. Chan S, Johnston S, Scheulen ME et al. (2002) First report: a phase 2 study of the safety and activity of CCI-779 for patients with locally advanced or metastatic breast cancer failing prior chemotherapy. Proc Am Soc Cancer Oncol 21: 44a

    Google Scholar 

  123. Pegram MD, Pienkowski T, Northfelt DW et al. (2004) Results of two openlabel, multicenter phase II studies of docetaxel, platinum salts, and trastuzumab in HER2-positive advanced breast cancer. J Natl Cancer Inst. 2004 May 19; 96(10): 759–69

    Article  PubMed  CAS  Google Scholar 

  124. Campone M, Kerbrat P, Roche H et al. (2003) Future perspectives. From basic research to the development of new therapies aimed at the inhibition of the different stages of signal transduction: applications in breast cancer. Bull Cancer. Oct 90(10): 851–64

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag France, Paris

About this paper

Cite this paper

Fumoleau, P., Campone, M., Isambert, N., Bourbouloux, E., Mayer, F., Coudert, B. (2006). Les nouvelles cibles thérapeutiques. Les nouvelles thérapeutiques ciblées. In: Cancer du sein. Springer, Paris. https://doi.org/10.1007/2-287-31109-2_13

Download citation

  • DOI: https://doi.org/10.1007/2-287-31109-2_13

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-25174-0

  • Online ISBN: 978-2-287-31109-3

Publish with us

Policies and ethics