Skip to main content

The Contribution of Nuclear Medicine to Pulmonary Imaging

  • Chapter
  • First Online:
Pediatric Chest Imaging

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2494 Accesses

Abstract

A variety of nuclear medicine imaging techniques have been applied to imaging of the chest. Several radiopharmaceuticals were designed specifically to diagnose changes in pulmonary physiology caused by pathologic processes. Intravenous injection of 99mTc macroaggregated albumin (MAA) permits identification of local and regional changes in pulmonary arterial perfusion, initially used to identify changes related to pulmonary embolism and later applied to evaluation of pulmonary arterial flow distribution in patients with congenital heart disease. Ventilation studies with noble gases such as 133Xe and 81mkrypton allow recognition of local and regional changes in ventilation and are used with 99mTc MAA perfusion imaging for the identification of pulmonary emboli. Radioaerosols, particularly 99mTc DTPA, can also demonstrate local and regional ventilation abnormalities. Aspiration of saliva can be detected by the radionuclide salivagram. Positron emission tomography (PET) after intravenous injection of [18F]fluoro-2-deoxyglucose (FDG) can be used to localize and follow neoplastic and inflammatory processes in the chest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen-Auerbach M, Yeom K, Park J et al (2006) Standard PET/CT of the chest during shallow breathing is inadequate for comprehensive staging of lung cancer. J Nucl Med 47:298–301

    PubMed  Google Scholar 

  • Amin R, Charron M, Grinblat L et al (2012) Cystic fibrosis: detecting changes in airway inflammation with FDG PET/CT. Radiology 264:868–875

    Article  PubMed  Google Scholar 

  • Barrington SF, Maisey MN (1996) Skeletal muscle uptake of fluorine-18-FDG: effect of oral diazepam. J Nucl Med 37:1127–1129

    CAS  PubMed  Google Scholar 

  • Bleeker-Rovers CP, de Kleijn EM, Corstens FH et al (2004) Clinical value of FDG PET in patients with fever of unknown origin and patients suspected of focal infection or inflammation. Eur J Nucl Med Mol Imaging 31:29–37

    Article  PubMed  Google Scholar 

  • Bleeker-Rovers CP, Vos FJ, Wanten GJA et al (2005) 18F-FDG PET in detecting metastatic infectious disease. J Nucl Med 46:2014–2019

    CAS  PubMed  Google Scholar 

  • Blickman JG, Rosen PR, Welch KJ et al (1985) Pectus excavatum in children: pulmonary scintigraphy before and after corrective surgery. Radiology 156:781–782

    Article  CAS  PubMed  Google Scholar 

  • Chen DL, Atkinson JJ, Ferkol TW (2013) FDG PET imaging in cystic fibrosis. Semin Nucl Med 43:412–419

    Article  PubMed  Google Scholar 

  • Daftary A, Gregory M, Daftary A et al (2005) Chest radiograph as a triage tool in the imaging-based diagnosis of pulmonary embolism. AJR Am J Roentgenol 185:132–134

    Article  PubMed  Google Scholar 

  • Donnelly LF, Gelfand MJ, Brody AS et al (1997) Comparison between morphologic changes seen on high-resolution CT and regional pulmonary perfusion seen on SPECT in patients with cystic fibrosis. Pediatr Radiol 27:920–925

    Article  CAS  PubMed  Google Scholar 

  • Eyer BA, Goodman LR, Washington L (2005) Clinicians’ response to radiologists’ reports of isolated subsegmental pulmonary embolism or inconclusive interpretation of pulmonary embolism using MDCT. Radiology 184:623–628

    Google Scholar 

  • Forbes KP, Reid JH, Murchison JT (2001) Do preliminary chest X-ray findings define the optimum role of pulmonary scintigraphy in suspected pulmonary embolism? Clin Radiol 56:397–400

    Article  CAS  PubMed  Google Scholar 

  • Fukuda Y, Momoi N, Mitomo M et al (2010) Increasing the accuracy of lung perfusion scintigraphy in children with bidirectional Glenn circulation. Pediatr Radiol 40:1890–1894

    Article  PubMed  Google Scholar 

  • Garcia CA, Van Nostrand D, Majd M et al (2004) Benzodiazepine-resistant “brown fat” pattern in positron emission tomography: two case reports of resolution with temperature control. Mol Imag Biol 6:368–372

    Article  Google Scholar 

  • Garcia CA, Van Nostrand D, Atkins F et al (2006) Reduction of brown fat 2-deoxy-2-[F-18]fluoro-d-glucose uptake by controlling environmental temperature prior to positron emission tomography scan. Mol Imag Biol 8:24–29

    Article  Google Scholar 

  • Gelfand MJ (1978) Shunts of the heart and great vessels. In: Proceedings of the 19th annual meeting and continuing education lectures of the southeastern chapter, society of nuclear medicine, Atlanta, Georgia, pp 9.1–9.23

    Google Scholar 

  • Gelfand MJ, O’Hara SM, Curtwright LA et al (2005) Premedication to block [(18)F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr Radiol 35:984–990

    Article  PubMed  Google Scholar 

  • Gelfand MJ, Gruppo RA, Nasser MP (2008) Ventilation-perfusion scintigraphy in children and adolescents is associated with a low rate of indeterminate studies. Clin Nucl Med 33:606–609

    Article  PubMed  Google Scholar 

  • Glass T, Heyman S, Seliem M et al (1991) Use of Tc-99 m MAA in determining the etiology of increasing cyanosis following SVC-PA anastomosis for the hypoplastic left heart syndrome. Clin Nucl Med 16:410–412

    Article  CAS  PubMed  Google Scholar 

  • Goerres GW, Burger C, Schwitter MR et al (2003) PET/CT of the abdomen: optimizing the patient breathing pattern. Eur Radiol 13:734–739

    Article  PubMed  Google Scholar 

  • Gungor T, Engel-Bicik I, Eich G et al (2001) Diagnostic and therapeutic impact of whole body positron emission tomography using fluorine-18-fluoro-2-deoxy-d-glucose in children with chronic granulomatous disease. Arch Dis Child 85:341–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hany TF, Gharehpapagh E, Kamel EM et al (2002) Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imag 29:1393–1398

    Article  Google Scholar 

  • Hayward MJ, Kharasch V, Sheils C et al (2007) Predicting inadequate long-term lung development in children with congenital diaphragmatic hernia: an analysis of longitudinal changes in ventilation and perfusion. J Pediatr Surg 42:112–116

    Article  PubMed  Google Scholar 

  • Heyman S (1989) The radionuclide salivagram for detecting the pulmonary aspiration of saliva in an infant. Pediatr Radiol 19:208–209

    Article  CAS  PubMed  Google Scholar 

  • Heyman S, Respondek M (1989) Detection of pulmonary aspiration in children by radionuclide “salivagram”. J Nucl Med 30:697–699

    CAS  PubMed  Google Scholar 

  • Jeandot R, Lambert B, Brendel AJ et al (1989) Lung ventilation and perfusion scintigraphy in the follow up of repaired congenital diaphragmatic hernia. Eur J Nucl Med 15:591–596

    Article  CAS  PubMed  Google Scholar 

  • Jones SE, Wittram C (2005) The indeterminate CT pulmonary angiogram: imaging characteristics and patient clinical outcome. Radiology 237:329–337

    Article  PubMed  Google Scholar 

  • Klein M, Cohen-Cymberknoh M, Armoni S et al (2009) 18F-fluorodeoxyglucose-PET/CT imaging of lungs in patients with cystic fibrosis. Chest 136:1220–1228

    Article  PubMed  Google Scholar 

  • Mackie GC, Pohlen JM (2005) Mediastinal histoplasmosis: F-18 FDG PET and CT findings simulating malignant disease. Clin Nucl Med 30:633–635

    Article  PubMed  Google Scholar 

  • Mascarenhas NB, Lam D, Lynch GR et al (2006) PET imaging of cerebral and pulmonary Nocardia infection. Clin Nucl Med 31:131–133

    Article  PubMed  Google Scholar 

  • McVeagh P, Howman-Giles R, Kemp A et al (1987) Pulmonary aspiration studied by radionuclide milk scanning and barium swallow roentgenography Am J Dis Child 141:917–921

    CAS  PubMed  Google Scholar 

  • Miniati M, Sostman HD, Gottschalk A et al (2008) Perfusion lung scintigraphy for the diagnosis of pulmonary embolism: a reappraisal and review of the Prospective Investigative Study of Acute Pulmonary Embolism Diagnosis methods. Semin Nucl Med 38:450–461

    Article  PubMed  Google Scholar 

  • Ozsahin H, von Planta M, Muller I et al (1998) Successful treatment of invasive aspergillosis in chronic granulomatous disease by bone marrow transplantation, granulocyte colony-stimulating factor-mobilized granulocytes, and liposomal amphotericin-B. Blood 92:2719–2724

    CAS  PubMed  Google Scholar 

  • Parker MS, Hui FK, Camacho MA et al (2005) Female breast radiation exposure during CT pulmonary angiography. AJR Am J Roentgenol 185:1228–1233

    Article  PubMed  Google Scholar 

  • Perko R, Messinger Y, Moertel C (2010) Pseudometastasis secondary to histoplasmosis infection: false-positive PET/CT findings. Pediatr Blood Cancer 54:621–623

    PubMed  Google Scholar 

  • Sharp SE, Helton KJ, Gelfand MJ, Brody AS (2007) Detection of pulmonary nodules on localization CT scans acquired during PET/CT imaging. Pediatr Radiol 37(1):S60

    Google Scholar 

  • Soler C, Figueras J, Roca I et al (1997) Pulmonary perfusion scintigraphy in the evaluation of the severity of bronchopulmonary dysplasia. Pediatr Radiol 27:32–35

    Article  CAS  PubMed  Google Scholar 

  • Sostman HD, Miniati M, Gottschalk A et al (2008) Sensitivity and specificity of perfusion scintigraphy combined with chest radiography for acute pulmonary embolism in PIOPED II. J Nucl Med 49:1741–1748

    Article  PubMed  Google Scholar 

  • Stabin MG, Gelfand MJ (1998) Dosimetry of pediatric nuclear medicine procedures. Q J Nucl Med 12:93–112

    Google Scholar 

  • Studler U, Gluecker T, Bongartz G et al (2005) Image quality from high-resolution CT of the lung: comparison of axial scans and of sections reconstructed from volumetric data acquired using MDCT. AJR Am J Roentgenol 185:602–607

    Google Scholar 

  • Tatsumi M, Engles JM, Ishimori T et al (2004) (18)F-FDG uptake in brown fat can be reduced pharmacologically. J Nucl Med 45:1189–1193

    CAS  PubMed  Google Scholar 

  • Touya JJ, Corbus HF, Savala KM et al (1986) Single photon emission computed tomography in the diagnosis of pulmonary thromboembolism. Semin Nucl Med 16:306–336

    Article  CAS  PubMed  Google Scholar 

  • Zukotynski KA, Fahey FH, Laffin S et al (2009) Constant ambient temperature of 24 degrees C significantly reduces FDG uptake by brown adipose tissue in children scanned during the winter. Eur J Nucl Med Mol Imag 36:602–606

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Gelfand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gelfand, M.J., Gilday, D.L. (2014). The Contribution of Nuclear Medicine to Pulmonary Imaging. In: Garcia-Peña, P., Guillerman, R. (eds) Pediatric Chest Imaging. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2014_963

Download citation

  • DOI: https://doi.org/10.1007/174_2014_963

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37336-7

  • Online ISBN: 978-3-642-37337-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics