Skip to main content

MR Imaging of the Normal Bone Marrow and Normal Variants

  • Chapter
Magnetic Resonance Imaging of the Bone Marrow

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 1718 Accesses

Abstract

The MR appearance of the normal marrow shows important variations not only with age and gender but also among individuals of the same age range and sex. On the contrary, marrow distribution and signal intensity patterns show little variation among similar bones of the same subject. Focal alterations in signal intensity can be observed as normal findings, reflecting local variations in the amount of normal expected medullary space components (including fat, hematopoietic or bone cells and vessels). Several variations from the normal age-related expected appearance have been recognized including focal or diffuse red marrow hyperplasia, enchondromas, hemangiomas, and marrow changes related to the presence of notochordal cells. Important limitations in the characterization potentials of MR imaging should also be kept in mind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altehoefer C, Bertz H, Ghanem NA, Langer M (2001) Extent and time course of morphological changes of bone marrow induced by granulocyte-colony stimulating factor as assessed by magnetic resonance imaging of healthy blood stem cell donors. J Magn Reson Imaging 14(2):141–146

    Article  PubMed  CAS  Google Scholar 

  • Baudrez V, Galant C, Vande Berg BC (2001) Benign vertebral hemangioma: MR-histological correlation. Skeletal Radiol 30(8):442–446

    Article  PubMed  CAS  Google Scholar 

  • Baur A, Stäbler A, Bartl R, Lamerz R, Scheidler J, Reiser M (1997) MRI gadolinium enhancement of bone marrow: age-related changes in normals and in diffuse neoplastic infiltration. Skeletal Radiol 26(7):414–418

    Article  PubMed  CAS  Google Scholar 

  • Biffar A, Sourbron S, Schmidt G et al (2010) Measurement of perfusion and permeability from dynamic contrast-enhanced MRI in normal and pathological vertebral bone marrow. Magn Reson Med 64(1):115–124

    Article  PubMed  Google Scholar 

  • Bolog N, Nanz D, Weishaupt D (2006) Muskuloskeletal imaging at 3.0 T: current status and future perspectives. Eur Radiol 16(6):1298–1307

    Article  PubMed  Google Scholar 

  • Bordalo-Rodrigues M, Galant C, Lonneux M, Clause D, Vande Berg BC (2003) Focal nodular hyperplasia of the hematopoietic marrow simulating vertebral metastasis on FDG positron emission tomography. Am J Roentgenol 180(3):669–671

    Google Scholar 

  • Buyn WM, Shin SO, Chang Y, Finsterbusch J, Frahm J (2002) Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. Am J Neuroradiol 23:906–912

    Google Scholar 

  • Carroll KW, Feller JF, Tirman PF (1997) Useful internal standards for distinguishing infiltrative marrow pathology from hematopoietic marrow at MRI. J Magn Reson Imaging 7(2):394–398

    Article  PubMed  CAS  Google Scholar 

  • Chen WT, Shih TT, Chen RC, Lo SY, Chou CT, Lee JM et al (2001) Vertebral bone marrow perfusion evaluated with dynamic contrast-enhanced MR imaging: significance of aging and sex. Radiology 220(1):213–218

    PubMed  CAS  Google Scholar 

  • Ciray I, Lindman H, Astrom GK, Wanders A, Bergh J, Ahlstrom HK (2003) Effect of granulocyte colony-stimulating factor (G-CSF)-supported chemotherapy on MR imaging of normal red bone marrow in breast cancer patients with focal bone metastases. Acta Radiol 44(5):472–484

    PubMed  CAS  Google Scholar 

  • Cristy M (1981) Active bone marrow distribution as a function of age in humans. Phys Med Biol 26(3):389–400

    Article  PubMed  CAS  Google Scholar 

  • Cuénod CA, Laredo JD, Chevret S, Hamze B, Naouri JF, Chapaux X, Bondeville JM, Tubiana JM (1996) Acute vertebral collapse due to osteoporosis or malignancy: appearance on unenhanced and gadolinium-enhanced MR images. Radiology 199(2):541–549

    PubMed  Google Scholar 

  • De Bruyn PPH, Breen PC, Thomas TB (1970) The microcirculation of the bone marrow. Anat Rec 168:55–68

    Article  PubMed  Google Scholar 

  • Delfaut EM, Beltran J, Johnson G, Rousseau J, Marchandise X, Cotten A (1999) Fat suppression in MR imaging: techniques and pitfalls. Radiographics 19(2):373–382

    PubMed  CAS  Google Scholar 

  • Deutsch AL, Mink JH, Rosenfelt FP, Waxman AD (1989) Incidental detection of hematopoietic hyperplasia on routine knee MR imaging. Am J Roentgenol 152(2):333–336

    CAS  Google Scholar 

  • Dietrich O, Herlihy A, Danneels WR et al (2001) Diffusion-weighted imaging of the spine using radial K-space trajectories. Magn Reson Mater Phys Biol Med 12:23–31

    CAS  Google Scholar 

  • Dietrich O, Biffar A, Reiser MF, Baur-Melnyk A (2009a) Diffusion-weighted imaging of the bone marrow. Semin Musculoskelet Radiol 13(2):134–144

    Article  PubMed  Google Scholar 

  • Dietrich O, Biffar A, Reiser MF, Baur-Melnyk A (2009b) Diffusion-weighted imaging of bone marrow. Semin Musculoskelet Radiol 13(2):134–144

    Article  PubMed  Google Scholar 

  • Dietrich O, Biffar A, Baur-Melnyk A, Reiser MF (2010) Technical aspects of MR diffusion imaging of the body. Eur J Radiol 76(3):314–322

    Article  PubMed  Google Scholar 

  • Elmstrom RL, Tsai DE, Vergilio JA, Downs LH, Alavi A, Schuster SJ (2004) Enhanced marrow [18F]fluorodeoxyglucose uptake related to myeloid hyperplasia in Hodgkin’s lymphoma can simulate lymphoma involvement in marrow. Clin Lymphoma 5(1):62–64

    Article  Google Scholar 

  • Eustace S, Tello R, DeCarvalho V, Carey J, Wroblicka JT, Melhem ER, Yucel EK (1997) A comparison of whole-body turboSTIR MR imaging and planar 99mTc-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases. Am J Roentgenol 169(6):1655–1661

    CAS  Google Scholar 

  • García AI, Milinkovic A, Tomás X, Rios J, Pérez I, Vidal-Sicart S, Pomés J, DelAmo M, Mallolas J (2011) MRI signal changes of the bone marrow in HIV-infected patients with lipodystrophy: correlation with clinical parameters. Skeletal Radiol 40(10):1295–1301

    Article  PubMed  Google Scholar 

  • Griffith JF, Yeung DK, Antonio GE et al (2005) Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast enhanced MR imaging and spectroscopy. Radiology 236:945–951

    Article  PubMed  Google Scholar 

  • Griffith JF, Yeung DK, Antonio GE et al (2006) Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 241:831–938

    Article  PubMed  Google Scholar 

  • Hajek PC, Baker LL, Goobar JE, Sartoris DJ, Hesselink JR, Haghighi P et al (1987) Focal fat deposition in axial bone marrow: MR characteristics. Radiology 162:245–249

    PubMed  CAS  Google Scholar 

  • Hanrahan CJ, Shah LM (2011) MRI of spinal bone marrow: part 2, T1-weighted imaging-based differential diagnosis. Am J Roentgenol 197(6):1309–1321

    Article  Google Scholar 

  • Hollinger EF, Alibazoglu H, Ali A, Green A, Lamonica G (1998) Hematopoietic cytokine-mediated FDG uptake simulates the appearance of diffuse metastatic disease on whole-body PET imaging. Clin Nucl Med 23(2):93–98

    Article  PubMed  CAS  Google Scholar 

  • Hong ED, Carrino JA, Weber KL, Fayad LM (2011) Prevalence of shoulder enchondromas on routine MR imaging. Clin Imaging 35(5):378–384

    Article  PubMed  Google Scholar 

  • Khoo MM, Tyler PA, Saifuddin A, Padhani AR (2011) Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skeletal Radiol 40(6):665–681

    Article  PubMed  Google Scholar 

  • Kransdorf MJ, Peterson JJ, Bancroft LW (2007) MR imaging of the knee: incidental osseous lesions. Radiol Clin North Am 45(6):943–954

    Article  PubMed  Google Scholar 

  • Kroon HM, Bloem JL, Holscher HC, van der Woude HJ, Reijnierse M, Taminiau AH (1994) MR imaging of edema accompanying benign and malignant bone tumors. Skeletal Radiol 23(4):261–269

    Article  PubMed  CAS  Google Scholar 

  • Kyriakos M (2011) Benign notochordal lesions of the axial skeleton: a review and current appraisal. Skeletal Radiol 40(9):1141–1152

    Article  PubMed  Google Scholar 

  • Laredo JD, Reizine D, Bard M, Merland JJ (1986) Vertebral hemangiomas: radiologic evaluation. Radiology 161(1):183–189

    PubMed  CAS  Google Scholar 

  • Levine CD, Schweitzer ME, Ehrlich SM (1994) Pelvic marrow in adults. Skeletal Radiol 23(5):343–347

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Pan SN, Yin YM, Li W, Chen ZA, Liu YH, Wu ZH, Guo QY (2011) Normal cranial bone marrow MR imaging pattern with age-related ADC value distribution. Eur J Radiol 80(2):471–477

    Article  PubMed  Google Scholar 

  • Liney GP, Bernard CP, Manton DJ, Turnbull LW, Langton CM (2007) Age, gender, and skeletal variation in bone marrow composition: a preliminary study at 3.0 Tesla. J Magn Reson Imaging 26(3):787–793

    Article  PubMed  Google Scholar 

  • Mirowitz SA (1993) Hematopoietic bone marrow within the proximal humeral epiphysis in normal adults: investigation with MR imaging. Radiology 188(3):689–693

    PubMed  CAS  Google Scholar 

  • Mirra JM, Brien EW (2001) Giant notochordal hamartoma of intraosseous origin: a newly reported benign entity to be distinguished from chordoma. Report of two cases. Skeletal Radiol 30(12):698–709

    Article  PubMed  CAS  Google Scholar 

  • Montazel JL, Divine M, Lepage E, Kobeiter H, Breil S, Rahmouni A (2003) Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging. Radiology 229(3):703–709

    Article  PubMed  Google Scholar 

  • Müller LS, Avenarius D, Damasio B, Eldevik OP, Malattia C, Lambot-Juhan K, Tanturri L, Owens CM, Rosendahl K (2011) The paediatric wrist revisited: redefining MR findings in healthy children. Ann Rheum Dis 70(4):605–610

    Article  PubMed  Google Scholar 

  • Murphey MD, Fairbain KJ, Parman L, Baxter KG, Parsa MB, Smith WS (1995) Muskuloskeletal angiomatous lesions: radiologic–pathologic correlation. Radiographics 15:893–917

    PubMed  CAS  Google Scholar 

  • Murphey MD, Andrews CL, Flemming DJ, Temple HT, Smith WS, Smirniotopoulos JG (1996) Primary tumors of the spine: radiologic–pathologic correlation. Radiographics 16:1131–1158

    PubMed  CAS  Google Scholar 

  • Nishiguchi T, Mochizuki K, Ohsawa M, Inoue T, Kageyama K, Suzuki A, Takami T, Miki Y (2011) Differentiating benign notochordal cell tumors from chordomas: radiographic features on MRI, CT, and tomography. Am J Roentgenol 196(3):644–650

    Article  Google Scholar 

  • Pal CR, Tasker AD, Ostlere SJ, Watson MS (1999) Heterogeneous signal in bone marrow on MRI of children’s feet: a normal finding? Skeletal Radiol 28(5):274–278

    Article  PubMed  CAS  Google Scholar 

  • Poulton TB, Murphy WD, Duerk JL, Chapek CC, Feiglin DH (1993) Bone marrow reconversion in adults who are smokers: MR imaging findings. Am J Roentgenol 161:1217–1221

    CAS  Google Scholar 

  • Raya JG, Dietrich O, Birkenmaier C, Sommer J, Reiser MF, Baur-Melnyk A (2007) Feasability of a RARE-based sequence for quantitative diffusion-weighted MR imaging of the spine. Eur Radiol 17:2872–2879

    Article  PubMed  CAS  Google Scholar 

  • Resnick D, Nemcek AA Jr, Haghighi P (1983) Spinal enostoses (bone islands). Radiology 147(2):373–376

    PubMed  CAS  Google Scholar 

  • Ricci C, Cova M, Kang YS, Yang A, Rahmouni A, Scott WW Jr et al (1990) Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 177(1):83–88

    PubMed  CAS  Google Scholar 

  • Ross JS, Masaryk TJ, Modic MT, Carter JR, Mapstone T, Dengel FH (1987) Vertebral hemangiomas: MR imaging. Radiology 165(1):165–169

    PubMed  CAS  Google Scholar 

  • Schmorl G, Junghans H, Doin G (1956) Clinique et radiologie de la colonne vertébrale normale et pathologique. In: Doin G (ed) Lésion du rachis osseux, Paris, pp 71–140

    Google Scholar 

  • Seymour R, Davies AM, Evans N, Mangham DC (1997) Diagnostic problems with atypical bone islands. Br J Radiol 70:87–88

    Google Scholar 

  • Shabshin N, Schweitzer ME, Morrison WB, Carrino JA, Keller MS, Grissom LE (2006) High-signal T2 changes of the bone marrow of the foot and ankle in children: red marrow or traumatic changes? Pediatr Radiol 36(7):670–676

    Google Scholar 

  • Shellock FG, Morris E, Deutsch AL, Mink JH, Kerr R, Boden SD (1992) Hematopoietic bone marrow hyperplasia: high prevalence on MR images of the knee in asymptomatic marathon runners. Am J Roentgenol 158(2):335–338

    CAS  Google Scholar 

  • Simpfendorfer CS, Ilaslan H, Davies AM, James SL, Obuchowski NA, Sundaram M (1996) Does the presence of focal normal marrow fat signal within a tumor on MRI exclude malignancy? An analysis of 184 histologically proven tumors of the pelvic and appendicular skeleton. Radiology 199(2):541–549

    Google Scholar 

  • Simpfendorfer CS, Ilaslan H, Davies AM, James SL, Obuchowski NA, Sundaram M (2008) Does the presence of focal normal marrow fat signal within a tumor on MRI exclude malignancy? An analysis of 184 histologically proven tumors of the pelvic and appendicular skeleton. Skeletal Radiol 37(9):797–804

    Article  PubMed  CAS  Google Scholar 

  • Stabler A, Doma AB, Baur A, Kruger A, Reiser MF (2000) Reactive bone marrow changes in infectious spondylitis: quantitative assessment with MR imaging. Radiology 217(3):863–868

    PubMed  CAS  Google Scholar 

  • Subhas N, Bui KL, Sundaram M, Ilaslan H, Recht MP (2009) Incidental tumor and tumor-like lesions around the knee. Semin Musculoskelet Radiol 13(4):353–370

    Article  PubMed  Google Scholar 

  • Vande Berg BC, Malghem J, Devuyst O, Maldague BE, Lambert MJ (1994) Anorexia nervosa: correlation between MR appearance of bone marrow and severity of disease. Radiology 193(3):859–864

    Google Scholar 

  • Vande Berg BC, Malghem J, Lecouvet FE, Lambert M, Maldague BE (1996) Distribution of serous-like bone marrow changes in the lower limbs of patients with anorexia nervosa: predominant involvement of the distal extremities. Am J Roentgenol 166(3):621–625

    Google Scholar 

  • Vande Berg BC, Lecouvet FE, Moysan P, Maldague B, Jamart J, Malghem J (1997) MR assessment of red marrow distribution and composition in the proximal femur: correlation with clinical and laboratory parameters. Skeletal Radiol 26(10):589–596

    Google Scholar 

  • Vande Berg BC, Malghem J, Lecouvet FE, Maldague BE (1998a) Magnetic resonance imaging of the normal bone marrow. Skeletal Radiol 27:471–483

    Google Scholar 

  • Vande Berg BC, Malghem J, Lecouvet FE, Maldague B (1998b) Classification and detection of bone marrow lesions with magnetic resonance imaging. Skeletal Radiol 27(10):529–545

    Google Scholar 

  • Vande Berg BC, Lecouvet FE, Galant C, Maldague BE, Malghem J (2005) Normal variants and frequent marrow alterations that simulate bone marrow lesions at MR imaging. Radiol Clin North Am 43(4):761–770

    Google Scholar 

  • Vogler JBI, Murphy WA (1988) Bone marrow imaging. Radiology 168(3):679–693

    PubMed  Google Scholar 

  • Waitches G, Zawin JK, Poznanski AK (1994) Sequence and rate of bone marrow conversion in the femora of children as seen on MR imaging: are accepted standards accurate? Am J Roentgenol 162(6):1399–1406

    Google Scholar 

  • Walden MJ, Murphey MD, Vidal JA (2008) Incidental enchondromas of the knee. Am J Roentgenol 190(6):1611–1615

    Article  Google Scholar 

  • Weiss L (1965) The structure of bone marrow functional interrelationships of vascular and hematopoietic compartments in experimental hemolytic anemia: an electron microscopic study. J Morph 117:467–538

    Article  PubMed  CAS  Google Scholar 

  • Wilner D (1982) Radiology of bone tumors and allied disorders. Benign vascular tumors and allied disorders of bone. WB Saunders, Philadelphia, pp 660–782

    Google Scholar 

  • Yamaguchi T, Yamato M, Saotome K (2002) First histologically confirmed case of a classic chordoma arising in a precursor benign notochordal lesion: differential diagnosis of benign and malignant notochordal lesions. Skeletal Radiol 31(7):413–418

    Article  PubMed  Google Scholar 

  • Yamaguchi T, Suzuki S, Ishiiwa H, Ueda Y (2004a) Intraosseous benign notochordal cell tumours: overlooked precursors of classic chordomas? Histopathology 44(6):597–602

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Suzuki S, Ishiiwa H, Shimizu K, Ueda Y (2004b) Benign notochordal cell tumors: a comparative histological study of benign notochordal cell tumors, classic chordomas, and notochordal vestiges of fetal intervertebral discs. Am J Surg Pathol 28(6):756–761

    Article  PubMed  Google Scholar 

  • Zampa V, Cosottini M, Michelassi C, Ortori S, Bruschini L, Bartolozzi C (2002) Value of opposed-phase gradient-echo technique in distinguishing between benign and malignant vertebral lesions. Eur Radiol 12(7):1811–1818

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno C. Vande Berg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vande Berg, B.C., Omoumi, P., Galant, C., Michoux, N., Lecouvet, F.E. (2013). MR Imaging of the Normal Bone Marrow and Normal Variants. In: Baur-Melnyk, A. (eds) Magnetic Resonance Imaging of the Bone Marrow. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_574

Download citation

  • DOI: https://doi.org/10.1007/174_2012_574

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17859-7

  • Online ISBN: 978-3-642-17860-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics