Skip to main content

Cardiac MRI Physics

  • Chapter
Clinical Cardiac MRI

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 4389 Accesses

Abstract

This chapter addresses the use of MRI and to a lesser extent CT in the diagnosis and management of pulmonary hypertension. The basics of pulmonary hypertension will be addressed, including epidemiology and treatment strategies. Then different MRI techniques will be discussed in the context of their relevance to pulmonary hypertension. Finally the role of CT in pulmonary hypertension will be discussed. By the end of the chapter the reader should have a better understanding of how to use cross-sectional imaging in pulmonary hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bogaert J, Kuzo R, Dymarkowski S, Janssen L, Celis I, Budts W, Gewillig M (2000) Follow-up of patients with previous treatment for coarctation of the thoracic aorta: comparison between contrast-enhanced MR angiography and fast spin-echo MR imaging. Eur Radiol 10:1847–1854

    Article  PubMed  CAS  Google Scholar 

  • Botnar RM, Stuber M, Danias PG, Kissinger KV, Manning WJ (1999) Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA. Circulation 99:3139–3148

    PubMed  CAS  Google Scholar 

  • Chrispin A, Small P, Rutter N, Coupland RE, Doyle M, Chapman B, Coxon R, Guilfoyle D, Cawley M, Mansfield P (1986) Echo planar imaging of normal and abnormal connections of the heart and great arteries. Pediatr Radiol 16:289–292

    Article  PubMed  CAS  Google Scholar 

  • Ding S, Wolff SD, Epstein FH (1998) Improved coverage in dynamic contrast-enhanced cardiac MRI using interleaved gradient-echo EPI. Magn Reson Med Off J Soc Magn Reson Med/Soc Magn Reson Med 39:514–519

    CAS  Google Scholar 

  • Fenchel M, Saleh R, Dinh H, Lee MH, Nael K, Krishnam M, Ruehm SG, Miller S, Child J, Finn JP (2007) Juvenile and adult congenital heart disease: time-resolved 3D contrast-enhanced MR angiography. Radiology 244:399–410

    Article  PubMed  Google Scholar 

  • Finn JP, Edelman RR (1993) Black-blood and segmented k-space magnetic resonance angiography. Magn Reson Imaging Clin North Am 1:349–357

    CAS  Google Scholar 

  • Greenman RL, Shirosky JE, Mulkern RV, Rofsky NM (2003) Double inversion black-blood fast spin-echo imaging of the human heart: a comparison between 1.5T and 3.0T. J Magn Reson Imaging JMRI 17:648–655

    Article  Google Scholar 

  • Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med Off J Soc Magn Reson Med/Soc Magn Reson Med 47:1202–1210

    Google Scholar 

  • Hansen MS, Atkinson D, Sorensen TS (2008) Cartesian SENSE and k-t SENSE reconstruction using commodity graphics hardware. Magn Reson Med Off J Soc Magn Reson Med/Soc Magn Reson Med 59:463–468

    Google Scholar 

  • Hansen MS, Baltes C, Tsao J, Kozerke S, Pruessmann KP, Eggers H (2006) k-t BLAST reconstruction from non-Cartesian k-t space sampling. Magn Reson Med Off J Soc Magn Reson Med/Soc Magn Reson Med 55:85–91

    Google Scholar 

  • Kaldoudi E, Williams SC, Barker GJ, Tofts PS (1993) A chemical shift selective inversion recovery sequence for fat-suppressed MRI: theory and experimental validation. Magn Reson Imaging 11:341–355

    Article  PubMed  CAS  Google Scholar 

  • Keegan J, Gatehouse PD, Taylor AM, Yang GZ, Jhooti P, Firmin DN (1999) Coronary artery imaging in a 0.5-Tesla scanner: implementation of real-time, navigator echo-controlled segmented k-space FLASH and interleaved-spiral sequences. Magn Reson Med Off J Soc Magn Reson Med/Soc Magn Reson Med 41:392–399

    CAS  Google Scholar 

  • Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  PubMed  CAS  Google Scholar 

  • Kolbitsch C, Prieto C, Smink J, Schaeffter T (2011) Highly efficient whole-heart imaging using radial phase encoding-phase ordering with automatic window selection. Magn Reson Med 66(4):1008--1018

    Google Scholar 

  • Korperich H, Gieseke J, Barth P, Hoogeveen R, Esdorn H, Peterschroder A, Meyer H, Beerbaum P (2004) Flow volume and shunt quantification in pediatric congenital heart disease by real-time magnetic resonance velocity mapping: a validation study. Circulation 109:1987–1993

    Article  PubMed  Google Scholar 

  • Lanzer P, Botvinick EH, Schiller NB, Crooks LE, Arakawa M, Kaufman L, Davis PL, Herfkens R, Lipton MJ, Higgins CB (1984) Cardiac imaging using gated magnetic resonance. Radiology 150:121–127

    PubMed  CAS  Google Scholar 

  • Lenz GW, Haacke EM, White RD (1989) Retrospective cardiac gating: a review of technical aspects and future directions. Magn Reson Imaging 7:445–455

    Article  PubMed  CAS  Google Scholar 

  • Muthurangu V, Lurz P, Critchely JD, Deanfield JE, Taylor AM, Hansen MS (2008) Real-time assessment of right and left ventricular volumes and function in patients with congenital heart disease by using high spatiotemporal resolution radial k-t SENSE. Radiology 248:782–791

    Article  PubMed  Google Scholar 

  • Nordmeyer J, Gaudin R, Tann OR, Lurz PC, Bonhoeffer P, Taylor AM, Muthurangu V (2010) MRI may be sufficient for noninvasive assessment of great vessel stents: an in vitro comparison of MRI, CT, and conventional angiography. Am J Roentgenol 195:865–871

    Article  Google Scholar 

  • Pruessmann KP, Weiger M, Boesiger P (2001) Sensitivity encoded cardiac MRI. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 3:1–9

    Article  CAS  Google Scholar 

  • Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med Off J Soc Magn Reson Med/Soc Magn Reson Med 42:952–962

    CAS  Google Scholar 

  • Schar M, Kozerke S, Fischer SE, Boesiger P (2004) Cardiac SSFP imaging at 3 Tesla. Magn Reson Med 51:799–806

    Article  PubMed  Google Scholar 

  • Scheffler K, Lehnhardt S (2003) Principles and applications of balanced SSFP techniques. Eur Radiol 13:2409–2418

    Article  PubMed  Google Scholar 

  • Simonetti OP, Finn JP, White RD, Laub G, Henry DA (1996) “Black blood” T2-weighted inversion-recovery MR imaging of the heart. Radiology 199:49–57

    PubMed  CAS  Google Scholar 

  • Sorensen TS, Korperich H, Greil GF, Eichhorn J, Barth P, Meyer H, Pedersen EM, Beerbaum P (2004) Operator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease: a validation study. Circulation 110:163–169

    Article  PubMed  Google Scholar 

  • Steeden JA, Atkinson D, Taylor AM, Muthurangu V (2010a) Assessing vascular response to exercise using a combination of real-time spiral phase contrast MR and noninvasive blood pressure measurements. J Magn Reson Imaging 31:997–1003

    Article  PubMed  Google Scholar 

  • Steeden JA, Atkinson D, Taylor AM, Muthurangu V (2010b) Split-acquisition real-time CINE phase-contrast MR flow measurements. Magn Reson Med Off J Soc Magn Reson Med/Soc Magn Reson Med 64:1664–1670

    Google Scholar 

  • Stehling MK, Holzknecht NG, Laub G, Bohm D, Von Smekal A, Reiser M (1996) Single-shot T1- and T2-weighted magnetic resonance imaging of the heart with black blood: preliminary experience. Magma 4:231–240

    Article  PubMed  CAS  Google Scholar 

  • Tsao J, Kozerke S, Boesiger P, Pruessmann KP (2005) Optimizing spatiotemporal sampling for k-t BLAST and k-t SENSE: application to high-resolution real-time cardiac steady-state free precession. Magn Reson Med Off J Soc Magn Reson Med/Soc Magn Reson Med 53:1372–1382

    Google Scholar 

  • Wang Y, Moin K, Akinboboye O, Reichek N (2005) Myocardial first pass perfusion: steady-state free precession versus spoiled gradient echo and segmented echo planar imaging. Magn Reson Med Off J Soc Magn Reson Med/Soc Magn Reson Med 54:1123–1129

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Muthurangu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Muthurangu, V., Dymarkowski, S. (2011). Cardiac MRI Physics. In: Bogaert, J., Dymarkowski, S., Taylor, A., Muthurangu, V. (eds) Clinical Cardiac MRI. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_412

Download citation

  • DOI: https://doi.org/10.1007/174_2011_412

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23034-9

  • Online ISBN: 978-3-642-23035-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics