Skip to main content

New and Emerging Therapies and Targets: Beta-3 Agonists

  • Chapter
  • First Online:
Heart Failure

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 243))

Abstract

While crucial for the acute physiologic response to stress, the adrenergic system may become maladaptive upon prolonged stimulation in the course of development of heart failure. This has been the basis for the development of beta-blocking therapies, targeting mainly beta1-2 adrenoreceptors (B1-2AR). The third isotype, B3AR, was more recently identified in cardiac myocytes and endothelial cells from human (and many other animal species), where its distinctive coupling to nitric oxide and antioxidant pathways suggested potential protective properties that were unexploited so far. The observation of beneficial effects of B3AR expression/activation on myocardial remodeling and the availability of specific agonists for clinical use now open the way for directly testing the hypothesis in heart failure patients. We will briefly review the specificities of B3AR signaling in the context of the cardiovascular adrenergic system, the evidence supporting its beneficial effects and outline an ongoing clinical trial using the B3AR agonist, mirabegron in patients with/at risk of developing heart failure with preserved ejection fraction (HFpEF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmet I, Krawczyk M, Heller P, Moon C, Lakatta EG, Talan MI (2004) Beneficial effects of chronic pharmacological manipulation of beta-adrenoreceptor subtype signaling in rodent dilated ischemic cardiomyopathy. Circulation 110:1083–1090. doi:10.1161/01.CIR.0000139844.15045.F9

    Article  CAS  PubMed  Google Scholar 

  • Amour J, Loyer X, Le Guen M, Mabrouk N, David JS, Camors E, Carusio N, Vivien B, Andriantsitohaina R, Heymes C, Riou B (2007) Altered contractile response due to increased beta3-adrenoceptor stimulation in diabetic cardiomyopathy: the role of nitric oxide synthase 1-derived nitric oxide. Anesthesiology 107:452–460. doi:10.1097/01.anes.0000278909.40408.24

    Article  CAS  PubMed  Google Scholar 

  • Angelone T, Filice E, Quintieri AM, Imbrogno S, Recchia A, Pulera E, Mannarino C, Pellegrino D, Cerra MC (2008) Beta3-adrenoceptors modulate left ventricular relaxation in the rat heart via the NO-cGMP-PKG pathway. Acta Physiol (Oxf) 193:229–239. doi:10.1111/j.1748-1716.2008.01838.x

    Article  CAS  Google Scholar 

  • Aragon JP, Condit ME, Bhushan S, Predmore BL, Patel SS, Grinsfelder DB, Gundewar S, Jha S, Calvert JW, Barouch LA, Lavu M, Wright HM, Lefer DJ (2011) Beta3-adrenoreceptor stimulation ameliorates myocardial ischemia-reperfusion injury via endothelial nitric oxide synthase and neuronal nitric oxide synthase activation. J Am Coll Cardiol 58:2683–2691. doi:10.1016/j.jacc.2011.09.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayers K, Byrne LM, DeMatteo A, Brown NJ (2012) Differential effects of nebivolol and metoprolol on insulin sensitivity and plasminogen activator inhibitor in the metabolic syndrome. Hypertension 59:893–898. doi:10.1161/HYPERTENSIONAHA.111.189589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belge C, Hammond J, Dubois-Deruy E, Manoury B, Hamelet J, Beauloye C, Markl A, Pouleur AC, Bertrand L, Esfahani H, Jnaoui K, Gotz KR, Nikolaev VO, Vanderper A, Herijgers P, Lobysheva I, Iaccarino G, Hilfiker-Kleiner D, Tavernier G, Langin D, Dessy C, Balligand JL (2014) Enhanced expression of beta3-adrenoceptors in cardiac myocytes attenuates neurohormone-induced hypertrophic remodeling through nitric oxide synthase. Circulation 129:451–462. doi:10.1161/CIRCULATIONAHA.113.004940

    Article  CAS  PubMed  Google Scholar 

  • Bristow MR (2000) Beta-adrenergic receptor blockade in chronic heart failure. Circulation 101:558–569

    Article  CAS  PubMed  Google Scholar 

  • Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB (1982) Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 307:205–211. doi:10.1056/NEJM198207223070401

    Article  CAS  PubMed  Google Scholar 

  • Bristow MR, Hershberger RE, Port JD, Gilbert EM, Sandoval A, Rasmussen R, Cates AE, Feldman AM (1990) Beta-adrenergic pathways in nonfailing and failing human ventricular myocardium. Circulation 82:I12–I25

    Article  CAS  PubMed  Google Scholar 

  • Brodde OE (1991) Beta 1- and beta 2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev 43:203–242

    CAS  PubMed  Google Scholar 

  • Brodde OE (1993) Beta-adrenoceptors in cardiac disease. Pharmacol Ther 60:405–430

    Article  CAS  PubMed  Google Scholar 

  • Bundgaard H, Liu CC, Garcia A, Hamilton EJ, Huang Y, Chia KK, Hunyor SN, Figtree GA, Rasmussen HH (2010) Beta(3) adrenergic stimulation of the cardiac Na+-K+ pump by reversal of an inhibitory oxidative modification. Circulation 122:2699–2708. doi:10.1161/CIRCULATIONAHA.110.964619

    Article  CAS  PubMed  Google Scholar 

  • Calvert JW, Condit ME, Aragon JP, Nicholson CK, Moody BF, Hood RL, Sindler AL, Gundewar S, Seals DR, Barouch LA, Lefer DJ (2011) Exercise protects against myocardial ischemia-reperfusion injury via stimulation of beta(3)-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols. Circ Res 108:1448–1458. doi:10.1161/CIRCRESAHA.111.241117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Candelore MR, Deng L, Tota LM, Kelly LJ, Cascieri MA, Strader CD (1996) Pharmacological characterization of a recently described human beta 3-adrenergic receptor mutant. Endocrinology 137:2638–2641. doi:10.1210/endo.137.6.8641219

    Article  CAS  PubMed  Google Scholar 

  • Cheng HJ, Zhang ZS, Onishi K, Ukai T, Sane DC, Cheng CP (2001) Upregulation of functional beta(3)-adrenergic receptor in the failing canine myocardium. Circ Res 89:599–606

    Article  CAS  PubMed  Google Scholar 

  • Chesley A, Lundberg MS, Asai T, Xiao RP, Ohtani S, Lakatta EG, Crow MT (2000) The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3′-kinase. Circ Res 87:1172–1179

    Article  CAS  PubMed  Google Scholar 

  • Chruscinski AJ, Rohrer DK, Schauble E, Desai KH, Bernstein D, Kobilka BK (1999) Targeted disruption of the beta2 adrenergic receptor gene. J Biol Chem 274:16694–16700

    Article  CAS  PubMed  Google Scholar 

  • Chu G, Lester JW, Young KB, Luo W, Zhai J, Kranias EG (2000) A single site (Ser16) phosphorylation in phospholamban is sufficient in mediating its maximal cardiac responses to beta-agonists. J Biol Chem 275:38938–38943. doi:10.1074/jbc.M004079200

    Article  CAS  PubMed  Google Scholar 

  • Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517. doi:10.1056/NEJMoa0810780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cypess AM, Weiner LS, Roberts-Toler C, Franquet Elia E, Kessler SH, Kahn PA, English J, Chatman K, Trauger SA, Doria A, Kolodny GM (2015) Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab 21:33–38. doi:10.1016/j.cmet.2014.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daaka Y, Luttrell LM, Lefkowitz RJ (1997) Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature 390:88–91. doi:10.1038/36362

    Article  CAS  PubMed  Google Scholar 

  • Danielsen W, v der Leyen H, Meyer W, Neumann J, Schmitz W, Scholz H, Starbatty J, Stein B, Doring V, Kalmar P (1989) Basal and isoprenaline-stimulated cAMP content in failing versus nonfailing human cardiac preparations. J Cardiovasc Pharmacol 14:171–173

    Article  CAS  PubMed  Google Scholar 

  • Dash R, Kadambi V, Schmidt AG, Tepe NM, Biniakiewicz D, Gerst MJ, Canning AM, Abraham WT, Hoit BD, Liggett SB, Lorenz JN, Dorn GW 2nd, Kranias EG (2001) Interactions between phospholamban and beta-adrenergic drive may lead to cardiomyopathy and early mortality. Circulation 103:889–896

    Article  CAS  PubMed  Google Scholar 

  • de Luis DA, Aller R, Izaola O, Gonzalez Sagrado M, Conde R (2008) Relation of Trp64Arg polymorphism of beta 3-adrenergic receptor gene to adipocytokines and fat distribution in obese patients. Ann Nutr Metab 52:267–271. doi:10.1159/000144047

    Article  PubMed  Google Scholar 

  • Dessy C, Balligand JL (2010) Beta3-adrenergic receptors in cardiac and vascular tissues emerging concepts and therapeutic perspectives. Adv Pharmacol 59:135–163. doi:10.1016/S1054-3589(10)59005-7

    Article  CAS  PubMed  Google Scholar 

  • Dessy C, Moniotte S, Ghisdal P, Havaux X, Noirhomme P, Balligand JL (2004) Endothelial beta3-adrenoceptors mediate vasorelaxation of human coronary microarteries through nitric oxide and endothelium-dependent hyperpolarization. Circulation 110:948–954. doi:10.1161/01.CIR.0000139331.85766.AF

    Article  CAS  PubMed  Google Scholar 

  • Dessy C, Saliez J, Ghisdal P, Daneau G, Lobysheva II, Frerart F, Belge C, Jnaoui K, Noirhomme P, Feron O, Balligand JL (2005) Endothelial beta3-adrenoreceptors mediate nitric oxide-dependent vasorelaxation of coronary microvessels in response to the third-generation beta-blocker nebivolol. Circulation 112:1198–1205. doi:10.1161/CIRCULATIONAHA.104.532960

    Article  CAS  PubMed  Google Scholar 

  • Dincer UD, Bidasee KR, Guner S, Tay A, Ozcelikay AT, Altan VM (2001) The effect of diabetes on expression of beta1-, beta2-, and beta3-adrenoreceptors in rat hearts. Diabetes 50:455–461

    Article  CAS  PubMed  Google Scholar 

  • Donckier JE, Massart PE, Van Mechelen H, Heyndrickx GR, Gauthier C, Balligand JL (2001) Cardiovascular effects of beta 3-adrenoceptor stimulation in perinephritic hypertension. Eur J Clin Invest 31:681–689

    Article  CAS  PubMed  Google Scholar 

  • Dumas M, Dumas JP, Bardou M, Rochette L, Advenier C, Giudicelli JF (1998) Influence of beta-adrenoceptor agonists on the pulmonary circulation. Effects of a beta3-adrenoceptor antagonist, SR 59230A. Eur J Pharmacol 348:223–228

    Article  CAS  PubMed  Google Scholar 

  • Edwards G, Feletou M, Weston AH (2010) Endothelium-derived hyperpolarising factors and associated pathways: a synopsis. Pflugers Arch 459:863–879. doi:10.1007/s00424-010-0817-1

    Article  CAS  PubMed  Google Scholar 

  • Emorine LJ, Marullo S, Briend-Sutren MM, Patey G, Tate K, Delavier-Klutchko C, Strosberg AD (1989) Molecular characterization of the human beta 3-adrenergic receptor. Science 245:1118–1121

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt S, Bohm M, Erdmann E, Lohse MJ (1996) Analysis of beta-adrenergic receptor mRNA levels in human ventricular biopsy specimens by quantitative polymerase chain reactions: progressive reduction of beta 1-adrenergic receptor mRNA in heart failure. J Am Coll Cardiol 27:146–154. doi:10.1016/0735-1097(95)00425-4

    Article  CAS  PubMed  Google Scholar 

  • Eschenhagen T (1993) G proteins and the heart. Cell Biol Int 17:723–749. doi:10.1006/cbir.1993.1135

    Article  CAS  PubMed  Google Scholar 

  • Fatima T, Altaf S, Phipps-Green A, Topless R, Flynn TJ, Stamp LK, Dalbeth N, Merriman TR (2016) Association analysis of the beta-3 adrenergic receptor Trp64Arg (rs4994) polymorphism with urate and gout. Rheumatol Int 36:255–261. doi:10.1007/s00296-015-3370-6

    Article  CAS  PubMed  Google Scholar 

  • Feldman MD, Alderman JD, Aroesty JM, Royal HD, Ferguson JJ, Owen RM, Grossman W, McKay RG (1988) Depression of systolic and diastolic myocardial reserve during atrial pacing tachycardia in patients with dilated cardiomyopathy. J Clin Invest 82:1661–1669. doi:10.1172/JCI113778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Prieto J, Garcia-Ruiz JM, Sanz-Rosa D, Pun A, Garcia-Alvarez A, Davidson SM, Fernandez-Friera L, Nuno-Ayala M, Fernandez-Jimenez R, Bernal JA, Izquierdo-Garcia JL, Jimenez-Borreguero J, Pizarro G, Ruiz-Cabello J, Macaya C, Fuster V, Yellon DM, Ibanez B (2014) Beta3 adrenergic receptor selective stimulation during ischemia/reperfusion improves cardiac function in translational models through inhibition of mPTP opening in cardiomyocytes. Basic Res Cardiol 109:422. doi:10.1007/s00395-014-0422-0

    Article  PubMed  Google Scholar 

  • Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H (1996) Functional beta3-adrenoceptor in the human heart. J Clin Invest 98:556–562. doi:10.1172/JCI118823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauthier C, Leblais V, Kobzik L, Trochu JN, Khandoudi N, Bril A, Balligand JL, Le Marec H (1998) The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest 102:1377–1384. doi:10.1172/JCI2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauthier C, Tavernier G, Trochu JN, Leblais V, Laurent K, Langin D, Escande D, Le Marec H (1999) Interspecies differences in the cardiac negative inotropic effects of beta(3)-adrenoceptor agonists. J Pharmacol Exp Ther 290:687–693

    CAS  PubMed  Google Scholar 

  • Gauthier C, Langin D, Balligand JL (2000) Beta3-adrenoceptors in the cardiovascular system. Trends Pharmacol Sci 21:426–431

    Article  CAS  PubMed  Google Scholar 

  • He JQ, Balijepalli RC, Haworth RA, Kamp TJ (2005) Crosstalk of beta-adrenergic receptor subtypes through Gi blunts beta-adrenergic stimulation of L-type Ca2+ channels in canine heart failure. Circ Res 97:566–573. doi:10.1161/01.RES.0000181160.31851.05

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann C, Leitz MR, Oberdorf-Maass S, Lohse MJ, Klotz KN (2004) Comparative pharmacology of human beta-adrenergic receptor subtypes – characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch Pharmacol 369:151–159. doi:10.1007/s00210-003-0860-y

    Article  CAS  PubMed  Google Scholar 

  • Idigo WO, Reilly S, Zhang MH, Zhang YH, Jayaram R, Carnicer R, Crabtree MJ, Balligand JL, Casadei B (2012) Regulation of endothelial nitric-oxide synthase (NOS) S-glutathionylation by neuronal NOS: evidence of a functional interaction between myocardial constitutive NOS isoforms. J Biol Chem 287:43665–43673. doi:10.1074/jbc.M112.412031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imbrogno S, Gattuso A, Mazza R, Angelone T, Cerra MC (2015) Beta3-AR and the vertebrate heart: a comparative view. Acta Physiol (Oxf) 214:158–175. doi:10.1111/apha.12493

    Article  CAS  Google Scholar 

  • Ishikawa Y, Sorota S, Kiuchi K, Shannon RP, Komamura K, Katsushika S, Vatner DE, Vatner SF, Homcy CJ (1994) Downregulation of adenylylcyclase types V and VI mRNA levels in pacing-induced heart failure in dogs. J Clin Invest 93:2224–2229. doi:10.1172/JCI117219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karimi Galougahi K, Liu CC, Garcia A, Fry NA, Hamilton EJ, Figtree GA, Rasmussen HH (2015) Beta3-adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade. Am J Physiol Cell Physiol 309:C286–C295. doi:10.1152/ajpcell.00071.2015

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiuchi K, Shannon RP, Komamura K, Cohen DJ, Bianchi C, Homcy CJ, Vatner SF, Vatner DE (1993) Myocardial beta-adrenergic receptor function during the development of pacing-induced heart failure. J Clin Invest 91:907–914. doi:10.1172/JCI116312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komajda M, Lam CS (2014) Heart failure with preserved ejection fraction: a clinical dilemma. Eur Heart J 35:1022–1032. doi:10.1093/eurheartj/ehu067

    Article  CAS  PubMed  Google Scholar 

  • Kou R, Michel T (2007) Epinephrine regulation of the endothelial nitric-oxide synthase: roles of RAC1 and beta3-adrenergic receptors in endothelial NO signaling. J Biol Chem 282:32719–32729. doi:10.1074/jbc.M706815200

    Article  CAS  PubMed  Google Scholar 

  • Kruger M, Kotter S, Grutzner A, Lang P, Andresen C, Redfield MM, Butt E, dos Remedios CG, Linke WA (2009) Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs. Circ Res 104:87–94. doi:10.1161/CIRCRESAHA.108.184408

    Article  PubMed  Google Scholar 

  • Lefkowitz RJ, Haber E, O’Hara D (1972) Identification of the cardiac beta-adrenergic receptor protein: solubilization and purification by affinity chromatography. Proc Natl Acad Sci U S A 69:2828–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liggett SB, Freedman NJ, Schwinn DA, Lefkowitz RJ (1993) Structural basis for receptor subtype-specific regulation revealed by a chimeric beta 3/beta 2-adrenergic receptor. Proc Natl Acad Sci U S A 90:3665–3669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim SL, Lam CS, Segers VF, Brutsaert DL, De Keulenaer GW (2015) Cardiac endothelium-myocyte interaction: clinical opportunities for new heart failure therapies regardless of ejection fraction. Eur Heart J 36:2050–2060. doi:10.1093/eurheartj/ehv132

    Article  CAS  PubMed  Google Scholar 

  • Lobysheva II, Biller P, Gallez B, Beauloye C, Balligand JL (2013) Nitrosylated hemoglobin levels in human venous erythrocytes correlate with vascular endothelial function measured by digital reactive hyperemia. PLoS One 8:e76457. doi:10.1371/journal.pone.0076457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longabaugh JP, Vatner DE, Vatner SF, Homcy CJ (1988) Decreased stimulatory guanosine triphosphate binding protein in dogs with pressure-overload left ventricular failure. J Clin Invest 81:420–424. doi:10.1172/JCI113335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longhurst JC (1990) Coronary arteriolar vasoconstriction in myocardial ischaemia: reflexes, sympathetic nervous system, catecholamines. Eur Heart J 11(Suppl B):43–52

    Article  CAS  PubMed  Google Scholar 

  • Mahata SK, Zheng H, Mahata S, Liu X, Patel KP (2016) Effect of heart failure on catecholamine granule morphology and storage in chromaffin cells. J Endocrinol 230:309–323. doi:10.1530/JOE-16-0146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier LS (2009) A novel mechanism for the treatment of angina, arrhythmias, and diastolic dysfunction: inhibition of late I(Na) using ranolazine. J Cardiovasc Pharmacol 54:279–286. doi:10.1097/FJC.0b013e3181a1b9e7

    Article  CAS  PubMed  Google Scholar 

  • Malik SG, Saraswati MR, Suastika K, Trimarsanto H, Oktavianthi S, Sudoyo H (2011) Association of beta3-adrenergic receptor (ADRB3) Trp64Arg gene polymorphism with obesity and metabolic syndrome in the Balinese: a pilot study. BMC Res Notes 4:167. doi:10.1186/1756-0500-4-167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning CD, McLaughlin MM, Livi GP, Cieslinski LB, Torphy TJ, Barnette MS (1996) Prolonged beta adrenoceptor stimulation up-regulates cAMP phosphodiesterase activity in human monocytes by increasing mRNA and protein for phosphodiesterases 4A and 4B. J Pharmacol Exp Ther 276:810–818

    CAS  PubMed  Google Scholar 

  • Massion PB, Dessy C, Desjardins F, Pelat M, Havaux X, Belge C, Moulin P, Guiot Y, Feron O, Janssens S, Balligand JL (2004) Cardiomyocyte-restricted overexpression of endothelial nitric oxide synthase (NOS3) attenuates beta-adrenergic stimulation and reinforces vagal inhibition of cardiac contraction. Circulation 110:2666–2672. doi:10.1161/01.CIR.0000145608.80855.BC

    Article  CAS  PubMed  Google Scholar 

  • Moniotte S, Kobzik L, Feron O, Trochu JN, Gauthier C, Balligand JL (2001a) Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation 103:1649–1655

    Article  CAS  PubMed  Google Scholar 

  • Moniotte S, Vaerman JL, Kockx MM, Larrouy D, Langin D, Noirhomme P, Balligand JL (2001b) Real-time RT-PCR for the detection of beta-adrenoceptor messenger RNAs in small human endomyocardial biopsies. J Mol Cell Cardiol 33:2121–2133. doi:10.1006/jmcc.2001.1475

    Article  CAS  PubMed  Google Scholar 

  • Nantel F, Bonin H, Emorine LJ, Zilberfarb V, Strosberg AD, Bouvier M, Marullo S (1993) The human beta 3-adrenergic receptor is resistant to short term agonist-promoted desensitization. Mol Pharmacol 43:548–555

    CAS  PubMed  Google Scholar 

  • Nedergaard J, Cannon B (2014) The browning of white adipose tissue: some burning issues. Cell Metab 20:396–407. doi:10.1016/j.cmet.2014.07.005

    Article  CAS  PubMed  Google Scholar 

  • Neumann J, Schmitz W, Scholz H, von Meyerinck L, Doring V, Kalmar P (1988) Increase in myocardial Gi-proteins in heart failure. Lancet 2:936–937

    Article  CAS  PubMed  Google Scholar 

  • Niu X, Watts VL, Cingolani OH, Sivakumaran V, Leyton-Mange JS, Ellis CL, Miller KL, Vandegaer K, Bedja D, Gabrielson KL, Paolocci N, Kass DA, Barouch LA (2012) Cardioprotective effect of beta-3 adrenergic receptor agonism: role of neuronal nitric oxide synthase. J Am Coll Cardiol 59:1979–1987. doi:10.1016/j.jacc.2011.12.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson AJ, Zhu W, Chow A, Agrawal R, Kosek J, Xiao RP, Kobilka B (2004) Protecting the myocardium: a role for the beta2 adrenergic receptor in the heart. Crit Care Med 32:1041–1048

    Article  PubMed  Google Scholar 

  • Pitcher JA, Freedman NJ, Lefkowitz RJ (1998) G protein-coupled receptor kinases. Annu Rev Biochem 67:653–692. doi:10.1146/annurev.biochem.67.1.653

    Article  CAS  PubMed  Google Scholar 

  • Porta S, Rinner I, Egger G, Rangetiner B, Sadjak A (1985) Enhancement of adrenaline plasma-levels shortens adrenaline half-life. Horm Metab Res 17:264–265. doi:10.1055/s-2007-1013513

    Article  CAS  PubMed  Google Scholar 

  • Rohrer DK, Desai KH, Jasper JR, Stevens ME, Regula DP Jr, Barsh GS, Bernstein D, Kobilka BK (1996) Targeted disruption of the mouse beta1-adrenergic receptor gene: developmental and cardiovascular effects. Proc Natl Acad Sci U S A 93:7375–7380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rona G (1985) Catecholamine cardiotoxicity. J Mol Cell Cardiol 17:291–306

    Article  CAS  PubMed  Google Scholar 

  • Saeed M, Sommer O, Holtz J, Bassenge E (1982) Alpha-adrenoceptor blockade by phentolamine causes beta-adrenergic vasodilation by increased catecholamine release due to presynaptic alpha-blockade. J Cardiovasc Pharmacol 4:44–52

    Article  CAS  PubMed  Google Scholar 

  • Schwinger RH, Munch G, Bolck B, Karczewski P, Krause EG, Erdmann E (1999) Reduced Ca(2+)-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J Mol Cell Cardiol 31:479–491

    Article  PubMed  Google Scholar 

  • Skeberdis VA, Gendviliene V, Zablockaite D, Treinys R, Macianskiene R, Bogdelis A, Jurevicius J, Fischmeister R (2008) Beta3-adrenergic receptor activation increases human atrial tissue contractility and stimulates the L-type Ca2+ current. J Clin Invest 118:3219–3227. doi:10.1172/JCI32519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sorrentino SA, Doerries C, Manes C, Speer T, Dessy C, Lobysheva I, Mohmand W, Akbar R, Bahlmann F, Besler C, Schaefer A, Hilfiker-Kleiner D, Luscher TF, Balligand JL, Drexler H, Landmesser U (2011) Nebivolol exerts beneficial effects on endothelial function, early endothelial progenitor cells, myocardial neovascularization, and left ventricular dysfunction early after myocardial infarction beyond conventional beta1-blockade. J Am Coll Cardiol 57:601–611. doi:10.1016/j.jacc.2010.09.037

    Article  CAS  PubMed  Google Scholar 

  • Susulic VS, Frederich RC, Lawitts J, Tozzo E, Kahn BB, Harper ME, Himms-Hagen J, Flier JS, Lowell BB (1995) Targeted disruption of the beta 3-adrenergic receptor gene. J Biol Chem 270:29483–29492

    Article  CAS  PubMed  Google Scholar 

  • Swedberg K, Eneroth P, Kjekshus J, Wilhelmsen L (1990) Hormones regulating cardiovascular function in patients with severe congestive heart failure and their relation to mortality. CONSENSUS Trial Study Group. Circulation 82:1730–1736

    Article  CAS  PubMed  Google Scholar 

  • Tagaya E, Tamaoki J, Takemura H, Isono K, Nagai A (1999) Atypical adrenoceptor-mediated relaxation of canine pulmonary artery through a cyclic adenosine monophosphate-dependent pathway. Lung 177:321–332

    Article  CAS  PubMed  Google Scholar 

  • Trappanese DM, Liu Y, McCormick RC, Cannavo A, Nanayakkara G, Baskharoun MM, Jarrett H, Woitek FJ, Tillson DM, Dillon AR, Recchia FA, Balligand JL, Houser SR, Koch WJ, Dell’Italia LJ, Tsai EJ (2015) Chronic beta1-adrenergic blockade enhances myocardial beta3-adrenergic coupling with nitric oxide-cGMP signaling in a canine model of chronic volume overload: new insight into mechanisms of cardiac benefit with selective beta1-blocker therapy. Basic Res Cardiol 110:456. doi:10.1007/s00395-014-0456-3

    Article  PubMed  Google Scholar 

  • Treinys R, Zablockaite D, Gendviliene V, Jurevicius J, Skeberdis VA (2014) Beta(3)-Adrenergic regulation of L-type Ca(2)(+) current and force of contraction in human ventricle. J Membr Biol 247:309–318. doi:10.1007/s00232-014-9635-2

    Article  CAS  PubMed  Google Scholar 

  • van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508. doi:10.1056/NEJMoa0808718

    Article  PubMed  Google Scholar 

  • Vij M, Drake MJ (2015) Clinical use of the beta3 adrenoceptor agonist mirabegron in patients with overactive bladder syndrome. Ther Adv Urol 7:241–248. doi:10.1177/1756287215591763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525. doi:10.1056/NEJMoa0808949

    Article  CAS  PubMed  Google Scholar 

  • Watts VL, Sepulveda FM, Cingolani OH, Ho AS, Niu X, Kim R, Miller KL, Vandegaer K, Bedja D, Gabrielson KL, Rameau G, O’Rourke B, Kass DA, Barouch LA (2013) Anti-hypertrophic and anti-oxidant effect of beta3-adrenergic stimulation in myocytes requires differential neuronal NOS phosphorylation. J Mol Cell Cardiol 62:8–17. doi:10.1016/j.yjmcc.2013.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao RP, Ji X, Lakatta EG (1995) Functional coupling of the beta 2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. Mol Pharmacol 47:322–329

    CAS  PubMed  Google Scholar 

  • Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP (2001) Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci U S A 98:1607–1612. doi:10.1073/pnas.98.4.1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Balligand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Michel, L.Y.M., Balligand, JL. (2016). New and Emerging Therapies and Targets: Beta-3 Agonists. In: Bauersachs, J., Butler, J., Sandner, P. (eds) Heart Failure. Handbook of Experimental Pharmacology, vol 243. Springer, Cham. https://doi.org/10.1007/164_2016_88

Download citation

Publish with us

Policies and ethics