Skip to main content

ADP-Ribosylation and Cross-Linking of Actin by Bacterial Protein Toxins

  • Chapter
  • First Online:
The Actin Cytoskeleton

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 235))

Abstract

Actin and the actin cytoskeleton play fundamental roles in host–pathogen interactions. Proper function of the actin cytoskeleton is crucial for innate and acquired immune defense. Bacterial toxins attack the actin cytoskeleton by targeting regulators of actin. Moreover, actin is directly modified by various bacterial protein toxins and effectors, which cause ADP-ribosylation or cross-linking of actin. Modification of actin can result in inhibition or stimulation of actin polymerization. Toxins, acting directly on actin, are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ®In the following both types of bacterial virulence factors will be assigned as “toxins.”

References

  • Aktories K (2011) Bacterial protein toxins that modify host regulatory GTPases. Nat Rev Microbiol 9:487–498

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Barbieri JT (2005) Bacterial cytotoxins: targeting eukaryotic switches. Nat Rev Microbiol 3:397–410

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Wegner A (1989) ADP-ribosylation of actin by clostridial toxins. J Cell Biol 109:1385–1387

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Ankenbauer T, Schering B, Jakobs KH (1986a) ADP-ribosylation of platelet actin by botulinum C2 toxin. Eur J Biochem 161:155–162

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986b) Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Bärmann M, Laux M, Presek P, Reuner KH, Schering B (1987) ADP-ribosylation of actin by botulinum C2 toxin. In: Heilmeyer L (ed) Signal transduction and protein phosphorylation. Plenum, New York, pp 149–153

    Chapter  Google Scholar 

  • Aktories K, Braun U, Rösener S, Just I, Hall A (1989) The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem Biophys Res Commun 158:209–213

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Wilde C, Vogelsgesang M (2004) Rho-modifying C3-like ADP-ribosyltransferases. Rev Physiol Biochem Pharmacol 152:1–22

    CAS  PubMed  Google Scholar 

  • Aktories K, Lang AE, Schwan C, Mannherz HG (2011) Actin as target for modification by bacterial protein toxins. FEBS J 278:4526–4543

    Article  CAS  PubMed  Google Scholar 

  • Al-Mohanna FA, Ohishi I, Hallett MB (1987) Botulinum C2 toxin potentiates activation of the neutrophil oxidase. Further evidence of a role for actin polymerization. FEBS Lett 219:40–44

    Article  CAS  PubMed  Google Scholar 

  • Baarlink C, Brandt D, Grosse R (2010) SnapShot: formins. Cell 142(172):172

    Article  CAS  PubMed  Google Scholar 

  • Barbieri JT, Riese MJ, Aktories K (2002) Bacterial toxins that modify the actin cytoskeleton. Annu Rev Cell Dev Biol 18:315–344

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Blöcker D, Behlke J, Bergsma-Schutter W, Brisson A, Benz R, Aktories K (2000) Cellular uptake of Clostridium botulinum C2 toxin requires oligomerization and acidification. J Biol Chem 275:18704–18711

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Aktories K, Popoff MR, Stiles BG (2004) Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 68:373–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartman T, Walsh EC, Wen KK, McKane M, Ren J, Alexander J, Rubenstein PA, Stainier DY (2004) Early myocardial function affects endocardial cushion development in zebrafish. PLoS Biol 2, E129

    Article  PubMed  PubMed Central  Google Scholar 

  • Blöcker D, Behlke J, Aktories K, Barth H (2001) Cellular uptake of the binary Clostridium perfringens iota-toxin. Infect Immun 69:2980–2987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dmochewitz L, Lillich M, Kaiser E, Jennings LD, Lang AE, Buchner J, Fischer G, Aktories K, Collier RJ, Barth H (2011) Role of CypA and Hsp90 in membrane translocation mediated by anthrax protective antigen. Cell Microbiol 13:359–373

    Article  CAS  PubMed  Google Scholar 

  • Dolores JS, Agarwal S, Egerer M, Satchell KJ (2015) Vibrio cholerae MARTX toxin heterologous translocation of beta-lactamase and roles of individual effector domains on cytoskeleton dynamics. Mol Microbiol 95:590–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dramsi S, Cossart P (1998) Intracellular pathogens and the actin cytoskeleton. Annu Rev Cell Dev Biol 14:137–166

    Article  CAS  PubMed  Google Scholar 

  • Durand E, Derrez E, Audoly G, Spinelli S, Ortiz-Lombardia M, Raoult D, Cascales E, Cambillau C (2012) Crystal structure of the VgrG1 actin cross-linking domain of the Vibrio cholerae type VI secretion system. J Biol Chem 287:38190–38199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durrbach A, Raposo G, Tenza D, Louvard D, Coudrier E (2000) Truncated brush border myosin I affects membrane traffic in polarized epithelial cells. Traffic 1:411–424

    Article  CAS  PubMed  Google Scholar 

  • Eckhardt M, Barth H, Blöcker D, Aktories K (2000) Binding of Clostridium botulinum C2 toxin to asparagine-linked complex and hybrid carbohydrates. J Biol Chem 275:2328–2334

    Article  CAS  PubMed  Google Scholar 

  • Ermert L, Brückner H, Walmrath D, Grimminger F, Aktories K, Suttorp N, Duncker H-R, Seeger W (1995) Role of endothelial cytoskeleton in high-permeability edema due to botulinum C2 toxin in perfused rabbit lungs. Am J Physiol Lung Cell Mol Physiol 268:L753–L761

    CAS  Google Scholar 

  • Ermert L, Duncker H-R, Bruckner H, Grimminger F, Hansen T, Rossig R, Aktories K, Seeger W (1997) Ultrastructural changes of lung capillary endothelium in response to botulinum C2 toxin. J Appl Physiol 82:382–388

    CAS  PubMed  Google Scholar 

  • Fahrner M, Derler I, Jardin I, Romanin C (2013) The STIM1/Orai signaling machinery. Channels (Austin) 7:330–343

    Google Scholar 

  • Fehr D, Burr SE, Gibert M, d‘Alayer J, Frey J, Popoff MR (2007) Aeromonas exoenzyme T of Aeromonas salmonicida is a bifunctional protein that targets the host cytoskeleton. J Biol Chem 282:28843–28852

    Article  CAS  PubMed  Google Scholar 

  • ffrench-Constant R, Waterfield N (2006) An ABC guide to the bacterial toxin complexes. Adv Appl Microbiol 58:169–183

    Google Scholar 

  • Fieldhouse RJ, Merrill AR (2008) Needle in the haystack: structure-based toxin discovery. Trends Biochem Sci 33:546–556

    Article  CAS  PubMed  Google Scholar 

  • Flatau G, Lemichez E, Gauthier M, Chardin P, Paris S, Fiorentini C, Boquet P (1997) Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387:729–733

    Article  CAS  PubMed  Google Scholar 

  • Forst S, Dowds B, Boemare N, Stackebrandt E (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol 51:47–72

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Galan JE (1999) A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401:293–297

    Article  CAS  PubMed  Google Scholar 

  • Fullner KJ, Mekalanos JJ (2000) In vivo covalent cross-linking of cellular actin by the Vibrio cholerae RTX toxin. EMBO J 19:5315–5323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatsogiannis C, Lang AE, Meusch D, Pfaumann V, Hofnagel O, Benz R, Aktories K, Raunser S (2013) A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature 495:520–523

    Article  CAS  PubMed  Google Scholar 

  • Geipel U, Just I, Schering B, Haas D, Aktories K (1989) ADP-ribosylation of actin causes increase in the rate of ATP exchange and inhibition of ATP hydrolysis. Eur J Biochem 179:229–232

    Article  CAS  PubMed  Google Scholar 

  • Geipel U, Just I, Aktories K (1990) Inhibition of cytochalasin D-stimulated G-actin ATPase by ADP-ribosylation with Clostridium perfringens iota toxin. Biochem J 266:335–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goehring U-M, Schmidt G, Pederson KJ, Aktories K, Barbieri JT (1999) The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J Biol Chem 274:36369–36372

    Article  CAS  PubMed  Google Scholar 

  • Grimminger F, Sibelius U, Aktories K, Just I, Seeger W (1991a) Suppression of cytoskeletal rearrangement in activated human neutrophils by botulinum C2 toxin. Impact on cellular signal transduction. J Biol Chem 266:19276–19282

    CAS  PubMed  Google Scholar 

  • Grimminger F, Sibelius U, Aktories K, Suttorp N, Seeger W (1991b) Inhibition of cytoskeletal rearrangement by botulinum C2 toxin amplifies ligand-evoked lipid mediator generation in human neutrophils. Mol Pharmacol 40:563–571

    CAS  PubMed  Google Scholar 

  • Gruenheid S, Finlay BB (2003) Microbial pathogenesis and cytoskeletal function. Nature 422:775–781

    Article  CAS  PubMed  Google Scholar 

  • Haglund CM, Welch MD (2011) Pathogens and polymers: microbe-host interactions illuminate the cytoskeleton. J Cell Biol 195:7–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haglund CM, Choe JE, Skau CT, Kovar DR, Welch MD (2010) Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility. Nat Cell Biol 12:1057–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han S, Craig JA, Putnam CD, Carozzi NB, Tainer JA (1999) Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat Struct Biol 6:932–936

    Article  CAS  PubMed  Google Scholar 

  • Hardt WD, Chen LM, Schuebel KE, Bustelo XR, Galan JE (1998) S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93:815–826

    Article  CAS  PubMed  Google Scholar 

  • Haug G, Leemhuis J, Tiemann D, Meyer DK, Aktories K, Barth H (2003) The host cell chaperone Hsp90 is essential for translocation of the binary Clostridium botulinum C2 toxin into the cytosol. J Biol Chem 274:32266–32274

    Article  CAS  Google Scholar 

  • Haug G, Aktories K, Barth H (2004) The host cell chaperone Hsp90 is necessary for cytotoxic action of the binary iota-like toxins. Infect Immun 72:3066–3068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heine K, Pust S, Enzenmuller S, Barth H (2008) ADP-ribosylation of actin by the Clostridium botulinum C2 toxin in mammalian cells results in delayed caspase-dependent apoptotic cell death. Infect Immun 76:4600–4608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heisler DB, Kudryashova E, Grinevich DO, Suarez C, Winkelman JD, Birukov KG, Kotha SR, Parinandi NL, Vavylonis D, Kovar DR, Kudryashov DS (2015) Actin-directed toxin. ACD toxin-produced actin oligomers poison formin-controlled actin polymerization. Science 349:535–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higley S, Way M (1997) Actin and cell pathogenesis. Curr Opin Cell Biol 9:62–69

    Article  CAS  PubMed  Google Scholar 

  • Ho BT, Dong TG, Mekalanos JJ (2014) A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 15:9–21

    Article  CAS  PubMed  Google Scholar 

  • Hochmann H, Pust S, von FG, Aktories K, Barth H (2006) Salmonella enterica SpvB ADP-ribosylates actin at position arginine-177-characterization of the catalytic domain within the SpvB protein and a comparison to binary clostridial actin-ADP-ribosylating toxins. Biochemistry 45:1271–1277

    Google Scholar 

  • Holmes KC, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347:44–49

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Sutton SE, Wallenfang AJ, Orchard RC, Wu X, Feng Y, Chai J, Alto NM (2009) Structural insights into host GTPase isoform selection by a family of bacterial GEF mimics. Nat Struct Mol Biol 16:853–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jank T, Bogdanovic X, Wirth C, Haaf E, Spoerner M, Bohmer KE, Steinemann M, Orth JH, Kalbitzer HR, Warscheid B, Hunte C, Aktories K (2013) A bacterial toxin catalyzing tyrosine glycosylation of Rho and deamidation of Gq and Gi proteins. Nat Struct Mol Biol 20:1273–1280

    Article  CAS  PubMed  Google Scholar 

  • Jank T, Eckerle S, Steinemann M, Trillhaase C, Schimpl M, Wiese S, van Aalten DM, Driever W, Aktories K (2015) Tyrosine glycosylation of Rho by Yersinia toxin impairs blastomere cell behaviour in zebrafish embryos. Nat Commun 6:7807

    Google Scholar 

  • Joyce SA, Watson RJ, Clarke DJ (2006) The regulation of pathogenicity and mutualism in Photorhabdus. Curr Opin Microbiol 9:127–132

    Article  CAS  PubMed  Google Scholar 

  • Just I, Geipel U, Wegner A, Aktories K (1990) De-ADP-ribosylation of actin by Clostridium perfringens iota- toxin and Clostridium botulinum C2 toxin. Eur J Biochem 192:723–727

    Article  CAS  PubMed  Google Scholar 

  • Just I, Wille M, Chaponnier C, Aktories K (1993) Gelsolin-actin complex is target for ADP-ribosylation by Clostridium botulinum C2 toxin in intact human neutrophils. Eur J Pharmacol Mol Pharmacol 246:293–297

    Article  CAS  Google Scholar 

  • Just I, Selzer J, Wilm M, Von Eichel-Streiber C, Mann M, Aktories K (1995) Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375:500–503

    Article  CAS  PubMed  Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin:DNase I complex. Nature 347:37–44

    Article  CAS  PubMed  Google Scholar 

  • Kaiser E, Kroll C, Ernst K, Schwan C, Popoff M, Fischer G, Buchner J, Aktories K, Barth H (2011) Membrane translocation of binary actin-ADP-ribosylating toxins from Clostridium difficile and Clostridium perfringens is facilitated by Cyclophilin A and Hsp90. Infect Immun 79:3913–3921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser E, Bohm N, Ernst K, Langer S, Schwan C, Aktories K, Popoff M, Fischer G, Barth H (2012) FK506-binding protein 51 interacts with Clostridium botulinum C2 toxin and FK506 inhibits membrane translocation of the toxin in mammalian cells. Cell Microbiol 14:1193–1205

    Article  CAS  PubMed  Google Scholar 

  • Klink BU, Barden S, Heidler TV, Borchers C, Ladwein M, Stradal TE, Rottner K, Heinz DW (2010) Structure of Shigella IpgB2 in complex with human RhoA: implications for the mechanism of bacterial guanine nucleotide exchange factor mimicry. J Biol Chem 285:17197–17208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knapp O, Benz R, Gibert M, Marvaud JC, Popoff MR (2002) Interaction of Clostridium perfringens iota-toxin with lipid bilayer membranes. Demonstration of channel formation by the activated binding component Ib and channel block by the enzyme component Ia. J Biol Chem 277:6143–6152

    Article  CAS  PubMed  Google Scholar 

  • Kovar DR, Harris ES, Mahaffy R, Higgs HN, Pollard TD (2006) Control of the assembly of ATP- and ADP-actin by formins and profilin. Cell 124:423–435

    Article  CAS  PubMed  Google Scholar 

  • Krall R, Schmidt G, Aktories K, Barbieri JT (2000) Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein. Infect Immun 68:6066–6068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudryashov DS, Durer ZA, Ytterberg AJ, Sawaya MR, Pashkov I, Prochazkova K, Yeates TO, Loo RR, Loo JA, Satchell KJ, Reisler E (2008) Connecting actin monomers by iso-peptide bond is a toxicity mechanism of the Vibrio cholerae MARTX toxin. Proc Natl Acad Sci U S A 105:18537–18542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudryashova E, Kalda C, Kudryashov DS (2012) Glutamyl phosphate is an activated intermediate in actin crosslinking by actin crosslinking domain (ACD) toxin. PLoS One 7, e45721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang AE, Schmidt G, Schlosser A, Hey TD, Larrinua IM, Sheets JJ, Mannherz HG, Aktories K (2010) Photorhabdus luminescens toxins ADP-ribosylate actin and RhoA to force actin clustering. Science 327:1139–1142

    Article  CAS  PubMed  Google Scholar 

  • Lemichez E, Aktories K (2013) Hijacking of Rho GTPases during bacterial infection. Exp Cell Res 319:2329–2336

    Article  CAS  PubMed  Google Scholar 

  • Lesnick ML, Reiner NE, Fierer J, Guiney DG (2001) The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol Microbiol 39:1464–1470

    Article  CAS  PubMed  Google Scholar 

  • Li G, Rungger-Brändle E, Just I, Jonas J-C, Aktories K, Wollheim CB (1994) Effect of disruption of actin filaments by Clostridium botulinum C2 toxin on insulin secretion in HIT-T15 cells and pancreatic islets. Mol Biol Cell 5:1199–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannherz HG, Hannappel E (2009) The beta-thymosins: intracellular and extracellular activities of a versatile actin binding protein family. Cell Motil Cytoskeleton 66:839–851

    Article  CAS  PubMed  Google Scholar 

  • Margarit SM, Davidson W, Frego L, Stebbins CE (2006) A steric antagonism of actin polymerization by a Salmonella virulence protein. Structure 14:1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Masuda S, Oda Y, Sasaki H, Ikenouchi J, Higashi T, Akashi M, Nishi E, Furuse M (2011) LSR defines cell corners for tricellular tight junction formation in epithelial cells. J Cell Sci 124:548–555

    Article  CAS  PubMed  Google Scholar 

  • Matter K, Dreyer F, Aktories K (1989) Actin involvement in exocytosis from PC12 cells: studies on the influence of botulinum C2 toxin on stimulated noradrenaline release. J Neurochem 52:370–376

    Article  CAS  PubMed  Google Scholar 

  • Mauss S, Chaponnier C, Just I, Aktories K, Gabbiani G (1990) ADP-ribosylation of actin isoforms by Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin. Eur J Biochem 194:237–241

    Google Scholar 

  • Meusch D, Gatsogiannis C, Efremov RG, Lang AE, Hofnagel O, Vetter IR, Aktories K, Raunser S (2014) Mechanism of Tc toxin action revealed in molecular detail. Nature 508:61–65

    Article  CAS  PubMed  Google Scholar 

  • Nagahama M, Nagayasu K, Kobayashi K, Sakurai J (2002) Binding component of Clostridium perfringens iota-toxin induces endocytosis in Vero cells. Infect Immun 70:1909–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagahama M, Yamaguchi A, Hagiyama T, Ohkubo N, Kobayashi K, Sakurai J (2004) Binding and internalization of Clostridium perfringens iota-toxin in lipid rafts. Infect Immun 72:3267–3275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norgauer J, Kownatzki E, Seifert R, Aktories K (1988) Botulinum C2 toxin ADP-ribosylates actin and enhances O2 - production and secretion but inhibits migration of activated human neutrophils. J Clin Invest 82:1376–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norgauer J, Just I, Aktories K, Sklar LA (1989) Influence of botulinum C2 toxin on F-actin and N-formyl peptide receptor dynamics in human neutrophils. J Cell Biol 109:1133–1140

    Article  CAS  PubMed  Google Scholar 

  • Ohishi I (1983) Response of mouse intestinal loop to botulinum C2 toxin: enterotoxic activity induced by cooperation of nonlinked protein components. Infect Immun 40:691–695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohishi I (1987) Activation of botulinum C2 toxin by trypsin. Infect Immun 55:1461–1465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohishi I, DasGupta BR (1987) Moleculare structure and biological activities of Clostridium botulinum C2 toxin. In: Eklund MW, Dowell VR (eds) Avian Botulism. Thomas, Springfield, pp 223–247

    Google Scholar 

  • Ohishi I, Iwasaki M, Sakaguchi G (1980) Purification and characterization of two components of botulinum C2 toxin. Infect Immun 30:668–673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohishi I, Iwasaki M, Sakaguchi G (1981) Vascular permeability activity of botulinum C2 toxin elicited by cooperation of two dissimilar protein components. Infect Immun 31:890–895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohya K, Handa Y, Ogawa M, Suzuki M, Sasakawa C (2005) IpgB1 is a novel Shigella effector protein involved in bacterial invasion of host cells. Its activity to promote membrane ruffling via Rac1 and Cdc42 activation. J Biol Chem 280:24022–24034

    Article  CAS  PubMed  Google Scholar 

  • Otto H, Tezcan-Merdol D, Girisch R, Haag F, Rhen M, Koch-Nolte F (2000) The spvB gene-product of the Salmonella enterica virulence plasmid is a mono(ADP-ribosyl)transferase. Mol Microbiol 37:1106–1115

    Article  CAS  PubMed  Google Scholar 

  • Papatheodorou P, Carette JE, Bell GW, Schwan C, Guttenberg G, Brummelkamp TR, Aktories K (2011) Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT). Proc Natl Acad Sci U S A 108:16422–16427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papatheodorou P, Wilczek C, Nolke T, Guttenberg G, Hornuss D, Schwan C, Aktories K (2012) Identification of the cellular receptor of Clostridium spiroforme toxin. Infect Immun 80:1418–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papatheodorou P, Hornuss D, Nolke T, Hemmasi S, Castonguay J, Picchianti M, Aktories K (2013) Clostridium difficile binary toxin CDT induces clustering of the lipolysis-stimulated lipoprotein receptor into lipid rafts. MBio 4:e00244-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paterson HF, Self AJ, Garrett MD, Just I, Aktories K, Hall A (1990) Microinjection of recombinant p21rho induces rapid changes in cell morphology. J Cell Biol 111:1001–1007

    Article  CAS  PubMed  Google Scholar 

  • Pellinen T, Ivaska J (2006) Integrin traffic. J Cell Sci 119:3723–3731

    Article  CAS  PubMed  Google Scholar 

  • Perieteanu AA, Visschedyk DD, Merrill AR, Dawson JF (2010) ADP-ribosylation of cross-linked actin generates barbed-end polymerization-deficient F-actin oligomers. Biochemistry 49:8944–8954

    Article  CAS  PubMed  Google Scholar 

  • Pernier J, Orban J, Avvaru BS, Jegou A, Romet-Lemonne G, Guichard B, Carlier MF (2013) Dimeric WH2 domains in Vibrio VopF promote actin filament barbed-end uncapping and assisted elongation. Nat Struct Mol Biol 20:1069–1076

    Article  CAS  PubMed  Google Scholar 

  • Pistor S, Chakraborty T, Niebuhr K, Domann E, Wehland J (1994) The ActA protein of Listeria monocytogenes acts as a nucleator inducing reorganization of the actin cytoskeleton. EMBO J 13:758–763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Popoff M (2000) Molecular biology of actin-ADP-ribosylating toxins. In: Aktories K, Just I (eds) Bacterial protein toxins. Springer, Berlin, pp 275–306

    Chapter  Google Scholar 

  • Popoff MR (2014) Bacterial factors exploit eukaryotic Rho GTPase signaling cascades to promote invasion and proliferation within their host. Small GTPases 5:pii:e28209

    Google Scholar 

  • Powelka AM, Sun J, Li J, Gao M, Shaw LM, Sonnenberg A, Hsu VW (2004) Stimulation-dependent recycling of integrin beta1 regulated by ARF6 and Rab11. Traffic 5:20–36

    Article  CAS  PubMed  Google Scholar 

  • Prepens U, Just I, Hofmann F, Aktories K (1997) ADP-ribosylating and glucosylating toxins as tools to study secretion in RBL cells. In: Haag F, Koch-Nolte F (eds) ADP-ribosylation in animal tissue. Plenum, New York, pp 349–353

    Chapter  Google Scholar 

  • Prepens U, Barth H, Wilting J, Aktories K (1998) Influence of Clostridium botulinum C2 toxin on FcεRI-mediated secretion and tyrosine phosphorylation in RBL cells. Naunyn-Schmiedeberg's Arch Pharmacol 357:323–330

    Article  CAS  Google Scholar 

  • Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ (2007) Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A 104:15508–15513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pukatzki S, McAuley SB, Miyata ST (2009) The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol 12:11–17

    Article  CAS  PubMed  Google Scholar 

  • Satchell KJ (2009) Actin crosslinking toxins of Gram-negative bacteria. Toxins (Basel) 1:123–133

    Article  CAS  Google Scholar 

  • Satchell KJ (2015) Multifunctional-autoprocessing repeats-in-toxin (MARTX) toxins of Vibrios. Microbiol Spectr 3:1–13. doi:10.1128/microbiolspec.VE-0002-2014

    Article  CAS  Google Scholar 

  • Schering B, Bärmann M, Chhatwal GS, Geipel U, Aktories K (1988) ADP-ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. Eur J Biochem 171:225–229

    Article  CAS  PubMed  Google Scholar 

  • Schleberger C, Hochmann H, Barth H, Aktories K, Schulz GE (2006) Structure and Action of the Binary C2 Toxin from Clostridium botulinum. J Mol Biol 364:705–715

    Article  CAS  PubMed  Google Scholar 

  • Schmid A, Benz R, Just I, Aktories K (1994) Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes: formation of cation-selective channels and inhibition of channel function by chloroquine and peptides. J Biol Chem 269:16706–16711

    CAS  PubMed  Google Scholar 

  • Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K (1997) Gln63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor 1. Nature 387:725–729

    Article  CAS  PubMed  Google Scholar 

  • Schnittler H-J, Schneider SW, Raifer H, Luo F, Dieterich P, Just I, Aktories K (2001) Role of actin filaments in endothelial cell-cell adhesion and membrane stability under fluid shear stress. Pflügers Arch Eur J Physiol 442:675–687

    Article  CAS  Google Scholar 

  • Schüler H, Nyakern M, Schutt CE, Lindberg U, Karlsson R (2000) Mutational analysis of arginine 177 in the nucleotide binding site of ß-actin. Eur J Biochem 267:4054–4062

    Article  PubMed  Google Scholar 

  • Schwan C, Stecher B, Tzivelekidis T, van HM, Rohde M, Hardt WD, Wehland J, Aktories K (2009) Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog 5:e1000626

    Google Scholar 

  • Schwan C, Kruppke AS, Nolke T, Schumacher L, Koch-Nolte F, Kudryashev M, Stahlberg H, Aktories K (2014) Clostridium difficile toxin CDT hijacks microtubule organization and reroutes vesicle traffic to increase pathogen adherence. Proc Natl Acad Sci U S A 111:2313–2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao F, Merritt PM, Bao Z, Innes RW, Dixon JE (2002) A Yersinia effector and a Pseudomonas avirulence protein define a family of cycteine proteases functioning in bacterial pathogenesis. Cell 109:575–588

    Article  CAS  PubMed  Google Scholar 

  • Sheff DR, Kroschewski R, Mellman I (2002) Actin dependence of polarized receptor recycling in Madin-Darby canine kidney cell endosomes. Mol Biol Cell 13:262–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson LL, Stiles BG, Zepeda H, Wilkins TD (1989) Production by Clostridium spiroforme of an iotalike toxin that possesses mono(ADP-ribosyl)transferase activity: identification of a novel class of ADP-ribosyltransferases. Infect Immun 57:255–261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stiles BG, Wilkens TD (1986) Purification and characterization of Clostridium perfringens iota toxin: dependence on two nonlinked proteins for biological activity. Infect Immun 54:683–688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stiles BG, Wilkins TD (1986) Clostridium perfringens iota toxin: synergism between two proteins. Toxicon 24:767–773

    Article  CAS  PubMed  Google Scholar 

  • Stiles BG, Hale ML, Marvaud JC, Popoff MR (2002) Clostridium perfringens iota toxin: characterization of the cell-associated iota b complex. Biochem J 367:801–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiles BG, Wigelsworth DJ, Popoff MR, Barth H (2011) Clostridial binary toxins: iota and c2 family portraits. Front Cell Infect Microbiol 1:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Stiles BG, Pradhan K, Fleming JM, Samy RP, Barth H, Popoff MR (2014) Clostridium and Bacillus binary enterotoxins: bad for the bowels, and eukaryotic being. Toxins (Basel) 6:2626–2656

    Article  CAS  Google Scholar 

  • Suarez G, Sierra JC, Erova TE, Sha J, Horneman AJ, Chopra AK (2010) A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol 192:155–168

    Article  CAS  PubMed  Google Scholar 

  • Suarez G, Khajanchi BK, Sierra JC, Erova TE, Sha J, Chopra AK (2012) Actin cross-linking domain of Aeromonas hydrophila repeat in toxin A (RtxA) induces host cell rounding and apoptosis. Gene 506:369–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suttorp N, Polley M, Seybold J, Schnittler H, Seeger W, Grimminger F, Aktories K (1991) Adenosine diphosphate-ribosylation of G-actin by botulinum C2 toxin increases endothelial permeability in vitro. J Clin Invest 87:1575–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Miki H, Takenawa T, Sasakawa C (1998) Neural Wiskott-Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri. EMBO J 17:2767–2776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tam VC, Serruto D, Dziejman M, Brieher W, Mekalanos JJ (2007) A type III secretion system in Vibrio cholerae translocates a formin/spire hybrid-like actin nucleator to promote intestinal colonization. Cell Host Microbe 1:95–107

    Article  CAS  PubMed  Google Scholar 

  • Taylor CW (2006) Store-operated Ca2+ entry: a STIMulating stOrai. Trends Biochem Sci 31:597–601

    Article  CAS  PubMed  Google Scholar 

  • Tezcan-Merdol D, Nyman T, Lindberg U, Haag F, Koch-Nolte F, Rhen M (2001) Actin is ADP-ribosylated by the Salmonella enterica virulence-associated protein SpvB. Mol Microbio 39:606–619

    Article  CAS  Google Scholar 

  • Uematsu Y, Kogo Y, Ohishi I (2007) Disassembly of actin filaments by botulinum C2 toxin and actin-filament-disrupting agents induces assembly of microtubules in human leukaemia cell lines. Biol Cell 99:141–150

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay A, Wu HL, Williams C, Field T, Galyov EE, van den Elsen JM, Bagby S (2008) The guanine-nucleotide-exchange factor BopE from Burkholderia pseudomallei adopts a compact version of the Salmonella SopE/SopE2 fold and undergoes a closed-to-open conformational change upon interaction with Cdc42. Biochem J 411:485–493

    Google Scholar 

  • Vandekerckhove J, Schering B, Bärmann M, Aktories K (1987) Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in Arg-177. FEBS Lett 225:48–52

    Article  CAS  PubMed  Google Scholar 

  • Vandekerckhove J, Schering B, Bärmann M, Aktories K (1988) Botulinum C2 toxin ADP-ribosylates cytoplasmic β/g-actin in arginine 177. J Biol Chem 263:696–700

    CAS  PubMed  Google Scholar 

  • Vilches S, Wilhelms M, Yu HB, Leung KY, Tomas JM, Merino S (2008) Aeromonas hydrophila AH-3 AexT is an ADP-ribosylating toxin secreted through the type III secretion system. Microb Pathog 44:1–12

    Article  CAS  PubMed  Google Scholar 

  • Visschedyk DD, Perieteanu AA, Turgeon ZJ, Fieldhouse RJ, Dawson JF, Merrill AR (2010) Photox, a novel actin-targeting mono-ADP-ribosyltransferase from Photorhabdus luminescens. J Biol Chem 285:13525–13534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Pawel-Rammingen U, Telepnev MV, Schmidt G, Aktories K, Wolf-Watz H, Rosqvist R (2000) GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol Microbiol 36:737–748

    Article  Google Scholar 

  • Waterfield N, Dowling A, Sharma S, Daborn PJ, Potter U, ffrench-Constant RH (2001a) Oral toxicity of Photorhabdus luminescens W14 toxin complexes in Escherichia coli. Appl Environ Microbiol 67:5017–5024

    Google Scholar 

  • Waterfield NR, Bowen DJ, Fetherston JD, Perry RD, ffrench-Constant RH (2001b) The tc genes of Photorhabdus: a growing family. Trends Microbiol 9:185–191

    Google Scholar 

  • Waterfield N, Hares M, Hinchliffe S, Wren B, ffrench-Constant R (2007) The insect toxin complex of Yersinia. Adv Exp Med Biol 603:247–257

    Google Scholar 

  • Waterfield NR, Ciche T, Clarke D (2009) Photorhabdus and a host of hosts. Annu Rev Microbiol 63:557–574

    Article  CAS  PubMed  Google Scholar 

  • Wegner A, Aktories K (1988) ADP-ribosylated actin caps the barbed ends of actin filaments. J Biol Chem 263:13739–13742

    CAS  PubMed  Google Scholar 

  • Wegner A, Aktories K, Ditsch A, Just I, Schoepper B, Selve N, Wille M (1994) Actin-gelsolin interaction. Adv Exp Med Biol 358:97–104

    Article  CAS  PubMed  Google Scholar 

  • Weigt C, Just I, Wegner A, Aktories K (1989) Nonmuscle actin ADP-ribosylated by botulinum C2 toxin caps actin filaments. FEBS Lett 246:181–184

    Article  CAS  PubMed  Google Scholar 

  • Wen KK, Rubenstein PA (2003) Biochemical consequences of the cardiofunk (R177H) mutation in yeast actin. J Biol Chem 278:48386–48394

    Article  CAS  PubMed  Google Scholar 

  • Wex CBA, Koch G, Aktories K (1997) Effects of Clostridium botulinum C2 toxin-induced depolymerisation of actin on degranulation of suspended and attached mast cells. Naunyn-Schmiedeberg‘s Arch Pharmacol 355:319–327

    Article  CAS  Google Scholar 

  • Wiegers W, Just I, Müller H, Hellwig A, Traub P, Aktories K (1991) Alteration of the cytoskeleton of mammalian cells cultured in vitro by Clostridium botulinum C2 toxin and C3 ADP-ribosyltransferase. Eur J Cell Biol 54:237–245

    CAS  PubMed  Google Scholar 

  • Wille M, Just I, Wegner A, Aktories K (1992) ADP-ribosylation of the gelsolin-actin complex by clostridial toxins. J Biol Chem 267:50–55

    CAS  PubMed  Google Scholar 

  • Yarbrough ML, Li Y, Kinch LN, Grishin NV, Ball HL, Orth K (2009) AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323:269–272

    Article  CAS  PubMed  Google Scholar 

  • Yen FT, Mann CJ, Guermani LM, Hannouche NF, Hubert N, Hornick CA, Bordeau VN, Agnani G, Bihain BE (1994) Identification of a lipolysis-stimulated receptor that is distinct from the LDL receptor and the LDL receptor-related protein. Biochemistry 33:1172–1180

    Article  CAS  PubMed  Google Scholar 

  • Young JA, Collier RJ (2007) Anthrax toxin: receptor-binding, internalization, pore formation, and translocation. Annu Rev Biochem 76:243–265

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Aktories .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 SpringerInternationalPublishingSwitzerland

About this chapter

Cite this chapter

Aktories, K., Schwan, C., Lang, A.E. (2016). ADP-Ribosylation and Cross-Linking of Actin by Bacterial Protein Toxins. In: Jockusch, B. (eds) The Actin Cytoskeleton. Handbook of Experimental Pharmacology, vol 235. Springer, Cham. https://doi.org/10.1007/164_2016_26

Download citation

Publish with us

Policies and ethics