Skip to main content

Electrospun Antimicrobial Wound Dressings: Novel Strategies to Fight Against Wound Infections

  • Chapter
  • First Online:
Chronic Wounds, Wound Dressings and Wound Healing

Part of the book series: Recent Clinical Techniques, Results, and Research in Wounds ((RCTRRW,volume 6))

Abstract

Antimicrobial drug-loaded electrospun nano-/microfibrous mats are of major interest as wound dressings for effective wound care. Treatment of wound infection is a crucial part of the therapy, and high bioburden leading to persistent infections and systemic toxicity are an increasing antibiotic-related problems. It is evident that biofilm plays a significant role in the development of hard-to-heal chronic wounds, and therefore novel strategies to fight against microbial biofilms are of relevance. In most cases, the selection of an appropriate antimicrobial agent becomes a critical factor. There is an increasing interest to develop antimicrobial bioactive wound dressings which are not only used to remove the microbes but also to interact with the wound and support the normal wound healing. In order to develop such dressings using electrospinning technology, several important properties need to be investigated which enable to understand the dressings and their potential applications for effectively treating the wound infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siddiqui AR, Bernstein JM (2010) Chronic wound infection: facts and controversies. Clin Dermatol 28(5):519–526

    PubMed  Google Scholar 

  2. Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17(6):763–771

    PubMed  PubMed Central  Google Scholar 

  3. Guest JF, Ayoub N, McIlwraith T, Uchegbu I, Gerrish A, Weidlich D, Vowden K, Vowden P (2015) Health economic burden that wounds impose on the National Health Service in the UK. Br Med J Open 5(12):e009283

    Google Scholar 

  4. Bowler PG, Duerden BI, Armstrong DG (2001) Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 14(2):244–269

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wolcott RD, Rhoads DD, Dowd SE (2008) Biofilms and chronic wound inflammation. J Wound Care 17(8):333–341

    CAS  PubMed  Google Scholar 

  6. Cooper RA, Bjarnsholt T, Alhede M (2014) Biofilms in wounds: a review of present knowledge. J Wound Care 23(11):570 572–574, 576–580

    CAS  PubMed  Google Scholar 

  7. Percival SL, McCarty SM, Lipsky B (2015) Biofilms and wounds: an overview of the evidence. Adv Wound Care 4(7):373–381

    Google Scholar 

  8. Rhoads DD, Wolcott RD, Percival SL (2008) Biofilms in wounds: management strategies. J Wound Care 17(11):502–508

    CAS  PubMed  Google Scholar 

  9. Lee SY, Kuti JL, Nicolau DP (2005) Antimicrobial management of complicated skin and skin structure infections in the era of emerging resistance. Surg Infect 6(3):283–295

    Google Scholar 

  10. Boateng JS, Matthews KH, HNE S, Eccleston GM, Sciences B, Building JA (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923

    CAS  PubMed  Google Scholar 

  11. Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6(1):29–40

    CAS  PubMed  Google Scholar 

  12. Gefen O, Balaban NQ (2009) The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress: review article. FEMS Microbiol Rev 33(4):704–717

    CAS  PubMed  Google Scholar 

  13. Andersson DI, Hughes D (2014) Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 12(7):465–478

    CAS  PubMed  Google Scholar 

  14. Leaper DJ (2006) Silver dressings: their role in wound management. Int Wound J 3(4):282–294

    PubMed  Google Scholar 

  15. Gainza G, Villullas S, Pedraz JL, Hernandez RM, Igartua M (2015) Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine 11(6):1551–1573

    CAS  PubMed  Google Scholar 

  16. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X (2014) Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 185:12–21

    CAS  PubMed  Google Scholar 

  17. Cui W, Zhou Y, Chang J (2010) Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci Technol Adv Mater 11(1):14108

    Google Scholar 

  18. Howell-Jones RS, Wilson MJ, Hill KE, Howard AJ, Price PE, Thomas DW (2005) A review of the microbiology, antibiotic usage and resistance in chronic skin wounds. J Antimicrob Chemother 55:143–149

    CAS  PubMed  Google Scholar 

  19. Haik J, Kornhaber R, Blal B, Harats M (2017) The feasibility of a handheld electrospinning device for the application of nanofibrous wound dressings. Adv Wound Care 6(5):166–174

    Google Scholar 

  20. Lam J, Chan R, Lam K, Costerton JW (1980) Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun 28(2):546–556

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Braunwarth H, Brill FHH (2014) Antimicrobial efficacy of modern wound dressings: Oligodynamic bactericidal versus hydrophobic adsorption effect. Wound Med 5:16–20

    Google Scholar 

  22. Moss AH, Vasilakis C, Holley JL, Foulks CJ, Pillai K, McDowell DE (1990) Use of a silicone dual-lumen catheter with a Dacron cuff as a long-term vascular access for hemodialysis patients. Am J Kidney Dis 16(3):211–215

    CAS  PubMed  Google Scholar 

  23. Marr KA, Sexton DJ, Conlon PJ, Corey GR, Schwab SJ, Kirkland KB (1997) Catheter-related bacteremia and outcome of attempted catheter salvage in patients undergoing hemodialysis. Ann Intern Med 127(4):275–280

    CAS  PubMed  Google Scholar 

  24. Wolcott RD, Rumbaugh KP, James G, Schultz G, Phillips P, Yang Q, Watters C, Stewart PS, Dowd SE (2010) Biofilm maturity studies indicate sharp debridement opens a time-dependent therapeutic window. J Wound Care 19(8):320–328

    CAS  PubMed  Google Scholar 

  25. Ammons MC (2010) Anti-biofilm strategies and the need for innovations in wound care. Recent Pat Antiinfect Drug Discov 5(1):10–17

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rambhia KJ, Ma PX (2015) Controlled drug release for tissue engineering. J Control Release 21:119–128

    Google Scholar 

  27. Abrigo M, McArthur SL, Kingshott P (2014) Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromol Biosci 14(6):772–792

    CAS  PubMed  Google Scholar 

  28. Dhivya S, Padma VV, Santhini E (2015) Wound dressings—a review. BioMed 5(4):24–28

    Google Scholar 

  29. Schultz GS, Sibbald RG, Falanga V, Ayello EA, Dowsett C, Harding K, Romanelli M, Stacey MC, Teot L, Vanscheidt W (2003) Wound bed preparation: a systematic approach to wound management. Wound Repair Regen 11(Suppl 1):S1–S28

    PubMed  Google Scholar 

  30. Skórkowska-Telichowska K, Czemplik M, Kulma A, Szopa J (2013) The local treatment and available dressings designed for chronic wounds. J Am Acad Dermatol 68(4):117–126

    Google Scholar 

  31. Winter GD (1962) Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 193:293–294

    CAS  PubMed  Google Scholar 

  32. Leaper DJ, Schultz G, Carville K, Fletcher J, Swanson T, Drake R (2012) Extending the TIME concept: what have we learned in the past 10 years? Int Wound J 9(Suppl 2):1–19

    PubMed  Google Scholar 

  33. Harries RL, Bosanquet DC, Harding KG (2016) Wound bed preparation: TIME for an update. Int Wound J 13(S3):8–14

    PubMed  Google Scholar 

  34. Dabiri G, Damstetter E, Phillips T (2016) Choosing a wound dressing based on common wound characteristics. Adv Wound Care 5(1):32–41

    Google Scholar 

  35. Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294(5547):1684–1688

    CAS  PubMed  Google Scholar 

  36. Huang ZMM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    CAS  Google Scholar 

  37. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49(26):5603–5621

    CAS  Google Scholar 

  38. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49(10):2387–2425

    CAS  Google Scholar 

  39. Sun Z, Zussman E, Yarin AL, Wendorff JH, Greiner A (2003) Compound core–shell polymer nanofibers by co-electrospinning. Adv Mater 15(22):1929–1932

    CAS  Google Scholar 

  40. Park JH, Braun PV (2010) Coaxial electrospinning of self-healing coatings. Adv Mater 22(4):496–499

    CAS  PubMed  Google Scholar 

  41. Yarin AL (2011) Coaxial electrospinning and emulsion electrospinning of core-shell fibers. Polym Adv Technol 22(3):310–317

    CAS  Google Scholar 

  42. Yarin AL, Zussman E (2004) Upward needleless electrospinning of multiple nanofibers. Polymer 45(9):2977–2980

    CAS  Google Scholar 

  43. Forward KM, Rutledge GC (2012) Free surface electrospinning from a wire electrode. Chem Eng J 183:492–503

    CAS  Google Scholar 

  44. Forward KM, Flores A, Rutledge GC (2013) Production of core/shell fibers by electrospinning from a free surface. Chem Eng Sci 104:250–259

    CAS  Google Scholar 

  45. Vysloužilová L, Buzgo M, Pokorný P, Chvojka J, Míčková A, Rampichová M, Kula J, Pejchar K, Bílek M, Lukáš D, Amler E (2017) Needleless coaxial electrospinning: a novel approach to mass production of coaxial nanofibers. Int J Pharm 516(1–2):293–300

    PubMed  Google Scholar 

  46. Molnar K, Nagy ZK (2016) Corona-electrospinning: needleless method for high-throughput continuous nanofiber production. Eur Polym J 74:279–286

    CAS  Google Scholar 

  47. Laidmäe I, Nieminen H, Salmi A, Paulin T, Rauhala T, Falk K, Yliruusi J, Heinämäki J, Haeggström E, Veski P 2016 Device and method to produce nanofibers and constructs thereof. WO2016151191 A1

    Google Scholar 

  48. Xu SC, Qin CC, Yu M, Dong RH, Yan X, Zhao H, Han WP, Zhang HD, Long YZ (2015) A battery-operated portable handheld electrospinning apparatus. Nanoscale 7(29):12351–12355

    CAS  PubMed  Google Scholar 

  49. Teo WE, Inai R, Ramakrishna S (2011) Technological advances in electrospinning of nanofibers. Sci Technol Adv Mater 12(1):13002

    Google Scholar 

  50. Harding KG, Morris HL, Patel GK (2002) Science, medicine and the future: healing chronic wounds. Br Med J 324(7330):160–163

    CAS  Google Scholar 

  51. Cortivo R, Vindigni V, Iacobellis L, Abatangelo G, Pinton P, Zavan B (2010) Nanoscale particle therapies for wounds and ulcers. Nanomedicine 5(4):641–656

    PubMed  Google Scholar 

  52. Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT (2007) Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater 3(3):321–330

    CAS  PubMed  Google Scholar 

  53. Murugan R, Ramakrishna S (2006) Nano-featured scaffolds for tissue engineering: a review of spinning methodologies. Tissue Eng 12(3):435–447

    CAS  PubMed  Google Scholar 

  54. Drobnik J, Krucinska I, Komisarczyk A, Sporny S, Szczepanowska A, Ciosek J (2017) Effects of electrospun scaffolds of di-O-butyrylchitin and poly-(ε-caprolactone) on wound healing. Can J Surg 60(3):162–171

    PubMed  PubMed Central  Google Scholar 

  55. Sun L, Gao W, Fu X, Shi M, Xie W, Zhang W, Zhao F, Chen X (2018) Enhanced wound healing in diabetic rats by nanofibrous scaffolds mimicking the basketweave pattern of collagen fibrils in native skin. Biomater Sci 6(2):340–349

    CAS  PubMed  Google Scholar 

  56. Zahedi P, Karami Z, Rezaeian I, Jafari SH, Mahdaviani P, Abdolghaffari AH, Abdollahi M (2012) Preparation and performance evaluation of tetracycline hydrochloride loaded wound dressing mats based on electrospun nanofibrous poly(lactic acid)/poly(−caprolactone) blends’. J Appl Polym Sci 124(5):4174–4183

    CAS  Google Scholar 

  57. Zhang R, Ma PX (2000) Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. J Biomed Mater Res 52(2):430–438

    CAS  PubMed  Google Scholar 

  58. Kamble P, Sadarani B, Majumdar A, Bhullar S (2017) Nanofiber based drug delivery systems for skin: a promising therapeutic approach. J Drug Deliv Sci Technol 41:124–133

    CAS  Google Scholar 

  59. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43(16):4403–4412

    CAS  Google Scholar 

  60. Yang F, Murugan R, Wang S, Ramakrishna S (2005) Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26(15):2603–2610

    CAS  PubMed  Google Scholar 

  61. Pelipenko J, Kristl J, Janković B, Baumgartner S, Kocbek P (2013) The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. Int J Pharm 456(1):125–134

    CAS  PubMed  Google Scholar 

  62. Li Z, Wang C (2013) Effects of working parameters on electrospinning. In: One-dimensional nanostructures. Springer, Berlin, pp 15–28

    Google Scholar 

  63. Abrigo M, Kingshott P, McArthur SL (2015) Electrospun polystyrene fiber diameter influencing bacterial attachment, proliferation, and growth. ACS Appl Mater Interfaces 7(14):7644–7652

    CAS  PubMed  Google Scholar 

  64. Sankar S, Sharma CS, Rath SN, Ramakrishna S (2017) Electrospun fibers for recruitment and differentiation of stem cells in regenerative medicine. Biotechnol J 12(12):1700263

    Google Scholar 

  65. Sharma P, Ng C, Jana A, Padh A, Szymanski P, JSH L, Behkam B, Nain AS (2017) Aligned fibers direct collective cell migration to engineer closing and nonclosing wound gaps. Mol Biol Cell 28(19):2579–2588

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Xie J, Macewan MR, Ray W, Liu W, Siewe DY, Xia Y (2010) Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS Nano 4(9):5027–5036

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50

    CAS  Google Scholar 

  68. Thenmozhi S, Dharmaraj N, Kadirvelu K, Kim HY (2017) Electrospun nanofibers: new generation materials for advanced applications. Mater Sci Eng 217:36–48

    CAS  Google Scholar 

  69. Zhang Y, Lim CT, Ramakrishna S, Huang ZM (2005) Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med 16(10):933–946

    CAS  PubMed  Google Scholar 

  70. Yao J, Bastiaansen C, Peijs T (2014) High strength and high modulus electrospun nanofibers. Fibers 2(2):158–186

    CAS  Google Scholar 

  71. Huang ZM, Zhang Y, Ramakrishna S, Lim C (2004) Electrospinning and mechanical characterization of gelatin nanofibers. Polymer 45(15):5361–5368

    CAS  Google Scholar 

  72. Yang L, Fitié CF, van der Werf KO, Bennink ML, Dijkstra PJ, Feijen J (2008) Mechanical properties of single electrospun collagen type I fibers. Biomaterials 29(8):955–962

    CAS  PubMed  Google Scholar 

  73. Meng ZX, Wang YS, Ma C, Zheng W, Li L, Zheng YF (2010) Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Eng C 30(8):1204–1210

    CAS  Google Scholar 

  74. Stoyanova N, Paneva D, Mincheva R, Toncheva A, Manolova N, Dubois P, Rashkov I (2014) Poly(l-lactide) and poly(butylene succinate) immiscible blends: from electrospinning to biologically active materials. Mater Sci Eng C 41:119–126

    CAS  Google Scholar 

  75. Baker SR, Banerjee S, Bonin K, Guthold M (2016) Determining the mechanical properties of electrospun poly-ε-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique. Mater Sci Eng 59:203–212

    CAS  Google Scholar 

  76. Cai J, Niu H, Yu Y, Xiong H, Lin T (2017) Effect of solvent treatment on morphology, crystallinity and tensile properties of cellulose acetate nanofiber mats. J Text Inst 108(4):555–561

    CAS  Google Scholar 

  77. Contardi M, Heredia-Guerrero JA, Perotto G, Valentini P, Pompa PP, Spanò R, Goldoni L, Bertorelli RR, Athanassiou A, Bayer IS (2017) Transparent ciprofloxacin-povidone antibiotic films and nanofiber mats as potential skin and wound care dressings. Eur J Pharm Sci 104:133–144

    CAS  PubMed  Google Scholar 

  78. McLister A, McHugh J, Cundell J, Davis J (2016) New developments in smart bandage technologies for wound diagnostics. Adv Mater 28(27):5732–5737

    CAS  PubMed  Google Scholar 

  79. Rodriguez P, Felix F, Woodley D, Shim E (2008) The role of oxygen in wound healing: a review of the literature. Dermatol Surg 34(9):1159–1169

    CAS  PubMed  Google Scholar 

  80. Xue R, Behera P, Viapiano MS, Lannutti JJ (2013) Rapid response oxygen-sensing nanofibers. Mater Sci Eng C 33(6):3450–3457

    CAS  Google Scholar 

  81. Hu M, Korschelt K, Daniel P, Landfester K, Tremel W, Bannwarth MB (2017) Fibrous nanozyme dressings with catalase-like activity for h2o2 reduction to promote wound healing. ACS Appl Mater Interfaces 9(43):38024–38031

    CAS  PubMed  Google Scholar 

  82. Tamm I, Heinämäki J, Laidmäe I, Rammo L, Paaver U, Ingebrigtsen SG, Škalko-Basnet N, Halenius A, Yliruusi J, Pitkänen P, Alakurtti S, Kogermann K (2016) Development of suberin fatty acids and chloramphenicol-loaded antimicrobial electrospun nanofibrous mats intended for wound therapy. J Pharm Sci 105(3):1239–1247

    CAS  PubMed  Google Scholar 

  83. Huang L, Arena JT, Manickam SS, Jiang X, Willis BG, McCutcheon JR (2014) Improved mechanical properties and hydrophilicity of electrospun nanofiber membranes for filtration applications by dopamine modification. J Membr Sci 460:241–249

    CAS  Google Scholar 

  84. Xu T, Yang J, Zhang J, Zhu Y, Li Q, Pan C, Zhang L (2017) Facile modification of electrospun fibrous structures with antifouling zwitterionic hydrogels. Biomed Mater 13(1):015021

    PubMed  Google Scholar 

  85. Sullivan P, Moate J, Stone B, Atkinson JD, Hashisho Z, Rood MJ (2012) Physical and chemical properties of PAN-derived electrospun activated carbon nanofibers and their potential for use as an adsorbent for toxic industrial chemicals. Adsorption 18(3–4):265–274

    CAS  Google Scholar 

  86. Wang G, Pan C, Wang L, Dong Q, Yu C, Zhao Z, Qiu J (2012) Activated carbon nanofiber webs made by electrospinning for capacitive deionization. Electrochim Acta. 69:65–70

    CAS  Google Scholar 

  87. Alqahtani M, Lalonde DH (2006) Sterile versus nonsterile clean dressings. Can J Plast Surg 14(1):25–27

    PubMed  PubMed Central  Google Scholar 

  88. Lipp C, Kirker K, Agostinho A, James G, Stewart P (2010) Testing wound dressings using an in vitro wound model. J Wound Care 19(6):220–226

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Dai Z, Ronholm J, Tian Y, Sethi B, Cao X (2016) Sterilization techniques for biodegradable scaffolds in tissue engineering applications. J Tissue Eng 7:1–13

    CAS  Google Scholar 

  90. Marreco PR, da Luz Moreira L, Genari SC, Moraes AM (2004) Effects of different sterilization methods on the morphology, mechanical properties, and cytotoxicity of chitosan membranes used as wound dressings. J Biomed Mater Res B Appl Biomater 71(2):268–277

    PubMed  Google Scholar 

  91. American Society of Plastic Surgeons (2008) Evidence-based Clinical Practice Guideline: Chronic Wounds of the Lower Extremity. . https://www.plasticsurgery.org/Documents/medical-professionals/health-policy/evidence-practice/Evidence-based-Clinical-Practice-Guideline-Chronic-Wounds-of-the-Lower-Extremity.pdf. Accessed 9 Jan 2018

  92. Webinar (2016) Final Guidance on Use of International Standard ISO 10993–1, Biological evaluation of medical devices—Part 1: Evaluation and testing within a risk management process. https://www.fda.gov/MedicalDevices/NewsEvents/WorkshopsComfeerencces/ucm507235.htm. Accessed 9 Jan 2018

  93. US Food and Drug Administration. Premarket Notification 510(k). 1997. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm. Accessed 9 Jan 2018

  94. Food and Drug Administration (2006) Guidance for industry: chronic cutaneous ulcer and burn wounds—developing products for treatment. onlinelibrary.wiley.com/doi/https://doi.org/10.1046/j.1524-475X.2001.00258.x/abstract. Accessed 9 Jan 2018

  95. Regulation of Wound Management Products (2017) MedMarket Diligence Report #S247, http://sumo.ly/wp68 via @medmarket. Accessed 27 Dec 2017

  96. Food and Drug Administration (2017) Classification of Products and Devices & Classification Issues: Guidance for Industry and FDA Staff. https://www.fda.gov/downloads/RegulatoryInformation/Guidances/UCM258957.pdf. Accessed 9 Jan 2018

  97. O’Meara S, Al-Kurdi D, Ologun Y, Ovington LG, Martyn-St James M, Richardson R (2013) Antibiotics and antiseptics for venous leg ulcers. Cochrane Database Syst Rev (12):CD003557

    Google Scholar 

  98. Storm-Versloot MN, Vos CG, Ubbink DT, Vermeulen H (2010) Topical silver for preventing wound infection. Cochrane Database Syst Rev (3):CD006478

    Google Scholar 

  99. Boateng J, Catanzano O (2015) Advanced therapeutic dressings for effective wound healing—a review. J Pharm Sci 104(11):3653–3680

    CAS  PubMed  Google Scholar 

  100. Food and Drug Administration (2017) ICH Q3C Maintenance Procedures for the Guidance for Industry Q3C Impurities: Residual Solvents. https://www.fda.gov/regulatoryinformation/guidances/ucm125820.htm. Accessed 9 Jan 2018

  101. Zhang Q, Li Y, Lin ZYW, KKY W, Lin M, Yildirimer L, Zhao X (2017) Electrospun polymeric micro/nanofibrous scaffolds for long-term drug release and their biomedical applications. Drug Discov Today 22(9):1351–1366

    CAS  PubMed  Google Scholar 

  102. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Sem Immunol 20(2):86–100

    CAS  Google Scholar 

  103. Wade RJ, Bassin EJ, Rodell CB, Burdick JA (2015) Protease-degradable electrospun fibrous hydrogels. Nat Commun 6:6639

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Shishatskaya EI, Nikolaeva ED, Vinogradova ON, Volova TG (2016) Experimental wound dressings of degradable PHA for skin defect repair. J Mater Sci 27(11):165

    Google Scholar 

  105. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S (2008) Electrospun poly(ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29(34):4532–4539

    CAS  PubMed  Google Scholar 

  106. Anjum S, Arora A, Alam MS, Gupta B (2016) Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. Int J Pharmaceut. 508(1–2):92–101

    CAS  Google Scholar 

  107. Wu L, Li H, Li S, Li X, Yuan X, Li X, Zhang Y (2010) Composite fibrous membranes of PLGA and chitosan prepared by coelectrospinning and coaxial electrospinning. J Biomed Mater Res A 92(2):563–574

    PubMed  Google Scholar 

  108. Schulz S, Angarano M, Fabritius M, Mülhaupt R, Dard M, Obrecht M, Tomakidi P, Steinberg T (2014) Nonwoven-based gelatin/polycaprolactone membrane proves suitability in a preclinical assessment for treatment of soft tissue defects. Tissue Eng Part A 20(13–14):1935–1947

    CAS  PubMed  PubMed Central  Google Scholar 

  109. MacEwan MR, MacEwan S, Kovacs TR, Batts J (2017) What makes the optimal wound healing material? A review of current science and introduction of a synthetic nanofabricated wound care scaffold. Cureus 9(10):e1736

    PubMed  PubMed Central  Google Scholar 

  110. MacEwan MR, MacEwan S, Wright AP, Kovacs TR, Batts J, Zhang L (2017) Comparison of a fully synthetic electrospun matrix to a bi-layered xenograft in healing full thickness cutaneous wounds in a porcine model. Cureus (8):9

    Google Scholar 

  111. Wang H, Yan X, Shen L, Li S, Lin Y, Wang S, Hou XL, Shi C, Yang Y, Dai J, Tan Q (2014) Acceleration of wound healing in acute full-thickness skin wounds using a collagen-binding peptide with an affinity for MSCs. Burns Trauma 2(4):181–186

    PubMed  PubMed Central  Google Scholar 

  112. Lai HJ, Kuan CH, Wu HC, Tsai JC, Chen TM, Hsieh DJ, Wang TW (2014) Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater 10(10):4156–4166

    CAS  PubMed  Google Scholar 

  113. Xie Z, Paras CB, Weng H, Punnakitikashem P, Su L-C, Vu K, Tang L, Yang J, Nguyen KT (2013) Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater 9(12):9351–9359

    CAS  PubMed  Google Scholar 

  114. Zhou X, Wang H, Zhang J, Li X, Wu Y, Wei Y, Ji S, Kong D, Zhao Q (2017) Functional poly(ε-caprolactone)/chitosan dressings with nitric oxide-releasing property improve wound healing. Acta Biomater 54:128–137

    CAS  PubMed  Google Scholar 

  115. Har-el Y, Gerstenhaber JA, Brodsky R, Huneke RB, Lelkes PI (2014) Electrospun soy protein scaffolds as wound dressings: Enhanced reepithelialization in a porcine model of wound healing. Wound Med 5:9–15

    Google Scholar 

  116. Noszczyk BH, Kowalczyk T, Łyżniak M, Zembrzycki K, Mikułowski G, Wysocki J, Kawiak J, Pojda Z (2015) Biocompatibility of electrospun human albumin: a pilot study. Biofabrication 7(1):015011

    CAS  PubMed  Google Scholar 

  117. Zhao L, Chen D, Yao Q, Li M (2017) Studies on the use of recombinant spider silk protein/polyvinyl alcohol electrospinning membrane as wound dressing. Int J Nanomed 12:8103–8114

    CAS  Google Scholar 

  118. Liao J, Zhong S, Wang S, Liu J, Chen J, He G, He B, Xu J, Liang Z, Mei T, Wu S, Cao K, Zhou J (2017) Preparation and properties of a novel carbon nanotubes/poly(vinyl alcohol)/epidermal growth factor composite biological dressing. Exp Ther Med 14(3):2341–2348

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Aarabi S, Longaker MT, Gurtner GC (2007) Hypertrophic scar formation following burns and trauma: new approaches to treatment. PLoS Med 4(9):e234

    PubMed  PubMed Central  Google Scholar 

  120. Taepaiboon P, Rungsardthong U, Supaphol P (2006) Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology 17(9):2317–2329

    CAS  Google Scholar 

  121. Romano I, Summa M, Heredia-Guerrero JA, Spanó R, Ceseracciu L, Pignatelli C, Bertorelli R, Mele E, Athanassiou A (2016) Fumarate-loaded electrospun nanofibers with anti-inflammatory activity for fast recovery of mild skin burns. Biomed Mater 11(4):041001

    CAS  PubMed  Google Scholar 

  122. Su WH, Cheng MH, Lee WL, Tsou TS, Chang WH, Chen CS, Wang PH (2010) Nonsteroidal anti-inflammatory drugs for wounds: pain relief or excessive scar formation? Mediators inflamm 2010:413238

    PubMed  PubMed Central  Google Scholar 

  123. Chouhan D, Janani G, Chakraborty B, Nandi SK, Mandal BB (2018) Functionalized PVA-silk blended nanofibrous mats promote diabetic wound healing via regulation of extracellular matrix and tissue remodelling. J Tiss Eng Regen Med 12(3):e1559–e1570

    CAS  Google Scholar 

  124. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92(8):827–839

    CAS  PubMed  Google Scholar 

  125. Chen M, Gao S, Dong M, Song J, Yang C, Howard KA, Kjems J, Besenbacher F (2012) Chitosan/siRNA nanoparticles encapsulated in plga nanofibers for siRNA delivery. ACS Nano 6(6):4835–4844

    CAS  PubMed  Google Scholar 

  126. Kim HS, Yoo HS (2013) Matrix metalloproteinase-inspired suicidal treatments of diabetic ulcers with siRNA-decorated nanofibrous meshes. Gene Ther 20(4):378–385

    CAS  PubMed  Google Scholar 

  127. Lanfer B, Arshi A, Hemmrich K, Wilhelms T, Blumenthal N. Wound care product with ECM layer. 2017 Patent WO2017103261 A1

    Google Scholar 

  128. Reshmi CR, Menon T, Binoy A, Mishra N, Elyas KK, Sujith A (2017) Poly(L-lactide-co-caprolactone)/collagen electrospun mat: potential for wound dressing and controlled drug delivery. Int J Polym Mater Polym Biomater 66(13):645–657

    CAS  Google Scholar 

  129. Zhang M, Lin H, Wang Y, Yang G, Zhao H, Sun D (2017) Erratum to “Fabrication and durable antibacterial properties of 3D porous wet electrospun RCSC/PCL nanofibrous scaffold with silver nanoparticles” (Appl. Surf. Sci. (2017) 414 (52–62) (S0169433217310693) (10.1016/j.apsusc.2017.04.052)). Appl Surf Sci 420:994

    CAS  Google Scholar 

  130. Zine R, Sinha M (2017) Nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/collagen/graphene oxide scaffolds for wound coverage. Korean J Couns Psychother 80:129–134

    CAS  Google Scholar 

  131. Lin J, Li C, Zhao Y, Hu J, Zhang L-M (2012) Co-electrospun nanofibrous membranes of collagen and zein for wound healing. ACS Appl Mater Interfaces 4(2):1050–1057

    CAS  PubMed  Google Scholar 

  132. Zhou T, Sui B, Mo X, Sun J (2017) Multifunctional and biomimetic fish collagen/bioactive glass nanofibers: Fabrication, antibacterial activity and inducing skin regeneration in vitro and in vivo. Int J Nanomedicine 12:3495–3507

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Dhand C, Venkatesh M, Barathi VA, Harini S, Bairagi S, Goh Tze Leng E, Muruganandham N, Low KZW, Fazil MHUT, Loh XJ, Srinivasan DK, Liu SP, Beuerman RW, Verma NK, Ramakrishna S, Lakshminarayanan R (2017) Bio-inspired crosslinking and matrix-drug interactions for advanced wound dressings with long-term antimicrobial activity. Biomaterials 138:153–168

    CAS  PubMed  Google Scholar 

  134. Shi R, Geng H, Gong M, Ye J, Wu C, Hu X, Zhang L (2018) Long-acting and broad-spectrum antimicrobial electrospun poly (ε-caprolactone)/gelatin micro/nanofibers for wound dressing. J Colloid Interface Sci 509:275–284

    CAS  PubMed  Google Scholar 

  135. Morsy R, Hosny M, Reicha F, Elnimr T (2017) Developing a potential antibacterial long-term degradable electrospun gelatin-based composites mats for wound dressing applications. React Funct Polym 114:8–12

    CAS  Google Scholar 

  136. Chouhan D, Chakraborty B, Nandi SK, Mandal BB (2017) Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing. Acta Biomater 48:157–174

    CAS  PubMed  Google Scholar 

  137. Yang X, Fan L, Ma L, Wang Y, Lin S, Yu F, Pan X, Luo G, Zhang D, Wang H (2017) Green electrospun Manuka honey/silk fibroin fibrous matrices as potential wound dressing. Mater Design 119:76–84

    CAS  Google Scholar 

  138. Calamak S, Erdoğdu C, Ozalp M, Ulubayram K (2014) Silk fibroin based antibacterial bionanotextiles as wound dressing materials. Korean J Couns Psychother 43:11–20

    CAS  Google Scholar 

  139. Monteiro N, Martins M, Martins A, Fonseca NA, Moreira JN, Reis RL, Neves NM (2015) Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Acta Biomater 18:196–205

    CAS  PubMed  Google Scholar 

  140. Munteanu B, Dumitriu R, Profire L, Sacarescu L, Hitruc G, Stoleru E, Dobromir M, Matricala A, Vasile C (2016) Hybrid nanostructures containing sulfadiazine modified chitosan as antimicrobial drug carriers. Nanomaterials 6(11):1–17

    Google Scholar 

  141. Hassiba AJ, El Zowalaty ME, Webster TJ, Abdullah AM, Nasrallah GK, Khalil KA, Luyt AS, Elzatahry AA (2017) Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications. Int J Nanomedicine 12:2205–2213

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Sadri M, Karimi-Nazari E, Hosseini H, Emamgholi A (2016) New chitosan/poly(ethylene oxide)/thyme nanofiber prepared by electrospinning method for antimicrobial wound dressing. J Nanostruct 6(4):322–328

    CAS  Google Scholar 

  143. Sarhan WA, Azzazy HME (2015) High concentration honey chitosan electrospun nanofibers: biocompatibility and antibacterial effects. Carbohydr Polym 122:135–143

    CAS  PubMed  Google Scholar 

  144. Severyukhina AN, Petrova NV, Yashchenok AM, Bratashov DN, Smuda K, Mamonova IA, Yurasov NA, Puchinyan DM, Georgieva R, Bäumler H, Lapanje A, Gorin DA (2017) Light-induced antibacterial activity of electrospun chitosan-based material containing photosensitizer. Mater Sci Eng C 70:311–316

    CAS  Google Scholar 

  145. Kohsari I, Shariatinia Z, Pourmortazavi SM (2016) Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles. Int J Biol Macromol 91:778–788

    CAS  PubMed  Google Scholar 

  146. Zhao R, Li X, Sun B, Zhang Y, Zhang D, Tang Z, Chen X, Wang C (2014) Electrospun chitosan/sericin composite nanofibers with antibacterial property as potential wound dressings. Int J Biol Macromol 68:92–97

    CAS  PubMed  Google Scholar 

  147. Basal G, Tetik GD, Kurkcu G, Bayraktar O, Gurhan ID, Atabey A (2016) Olive leaf extract loaded silk fibroin/hyaluronic acid nanofiber webs for wound dressing applications. Dig J Nanomater Biostruct 11(4):1113–1123

    Google Scholar 

  148. Chen S, Cui S, Hu J, Zhou Y, Liu Y (2017) Pectinate nanofiber mat with high absorbency and antibacterial activity: A potential superior wound dressing to alginate and chitosan nanofiber mats. Carbohydr Polym 174:591–600

    CAS  PubMed  Google Scholar 

  149. Mokhena TC, Luyt AS (2017) Electrospun alginate nanofibres impregnated with silver nanoparticles: preparation, morphology and antibacterial properties. Carbohydr Polym 165:304–312

    CAS  PubMed  Google Scholar 

  150. Fu R, Li C, Yu C, Xie H, Shi S, Li Z, Wang Q, Lu L (2016) A novel electrospun membrane based on moxifloxacin hydrochloride/poly(vinyl alcohol)/sodium alginate for antibacterial wound dressings in practical application. Drug Deliv 23(3):828–839

    PubMed  Google Scholar 

  151. Liao N, Unnithan AR, Joshi MK, Tiwari AP, Hong ST, Park C-H, Kim CS (2015) Electrospun bioactive poly (ɛ-caprolactone)–cellulose acetate–dextran antibacterial composite mats for wound dressing applications. Colloids Surf A Physicochem Eng Asp 469:194–201

    CAS  Google Scholar 

  152. Abdalkarim SYH, Yu HY, Wang D, Yao J (2017) Electrospun poly(3-hydroxybutyrate-co-3-hydroxy-valerate)/cellulose reinforced nanofibrous membranes with ZnO nanocrystals for antibacterial wound dressings. Cellulose 24(7):2925–2938

    CAS  Google Scholar 

  153. Bhattacharjee A, Kumar K, Arora A, Katti DS (2016) Fabrication and characterization of Pluronic modified poly(hydroxybutyrate) fibers for potential wound dressing applications. Mater Sci Eng C Mater Biol Appl 63:266–273

    CAS  PubMed  Google Scholar 

  154. Mohammadi MR, Rabbani S, Bahrami SH, Joghataei MT, Moayer F (2016) Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers. Mater Sci Eng C 69:1183–1191

    CAS  Google Scholar 

  155. Nitanan T, Akkaramongkolporn P, Rojanarata T, Ngawhirunpat T, Opanasopit P (2013) Neomycin-loaded poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)/polyvinyl alcohol (PVA) ion exchange nanofibers for wound dressing materials. Int J Pharm 448(1):71–78

    CAS  PubMed  Google Scholar 

  156. Mohseni M, Shamloo A, Aghababaei Z, Vossoughi M, Moravvej H (2016) Antimicrobial wound dressing containing silver sulfadiazine with high biocompatibility: in vitro study. Artif Organs 40(8):765–773

    CAS  PubMed  Google Scholar 

  157. Aruan NM, Sriyanti I, Edikresnha D, Suciati T, Munir MM, Khairurrijal K (2017) Polyvinyl alcohol/soursop leaves extract composite nanofibers synthesized using electrospinning technique and their potential as antibacterial wound dressing. Procedia Eng 170:31–35

    CAS  Google Scholar 

  158. El-Aassar MR, El Fawal GF, El-Deeb NM, Hassan HS, Mo X (2016) Electrospun polyvinyl alcohol/ pluronic f127 blended nanofibers containing titanium dioxide for antibacterial wound dressing. Appl Biochem Biotechnol 178(8):1488–1502

    CAS  PubMed  Google Scholar 

  159. Wang H, She Y, Chu C, Liu H, Jiang S, Sun M, Jiang S (2015) Preparation, antimicrobial and release behaviors of nisin-poly (vinyl alcohol)/wheat gluten/ZrO2 nanofibrous membranes. J Mater Sci 50(14):5068–5078

    CAS  Google Scholar 

  160. Alavarse AC, de Oliveira Silva FW, Colque JT, da Silva VM, Prieto T, Venancio EC, Bonvent JJ (2017) Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing. Mater Sci Eng C Mater Biol Appl 77:271–281

    CAS  PubMed  Google Scholar 

  161. Wang H, Chu C, Hao L, She Y, Li Y, Zhai L, Jiang S (2015) Synthesis, antimicrobial, and release behaviors of tetracycline hydrochloride loaded poly (vinyl alcohol)/chitosan/ZrO2/nanofibers. J Appl Polym Sci 132(36):2–11

    Google Scholar 

  162. Liu Y, Liang X, Zhang R, Lan W, Qin W (2017) Fabrication of electrospun polylactic acid/Cinnamaldehyde/β-cyclodextrin fibers as an antimicrobialwound dressing. Polymers 9(10)

    Google Scholar 

  163. Zhao R, Li X, Sun B, Tong Y, Jiang Z, Wang C (2015) Nitrofurazone-loaded electrospun PLLA/sericin-based dual-layer fiber mats for wound dressing application. RSC Adv 5(22):16940–16949

    CAS  Google Scholar 

  164. Rodríguez-Tobías H, Morales G, Grande D (2016) Improvement of mechanical properties and antibacterial activity of electrospun poly(D,L-lactide)-based mats by incorporation of ZnO-graft-poly(D,L-lactide) nanoparticles. Mater Chem Phys V(182):324–331

    Google Scholar 

  165. Rodríguez-Tobías H, Morales G, Ledezma A, Romero J, Grande D (2014) Novel antibacterial electrospun mats based on poly(D,L-lactide) nanofibers and zinc oxide nanoparticles. J Mater Sci 49(24):8373–8385

    Google Scholar 

  166. Ardila N, Medina N, Arkoun M, Heuzey MC, Ajji A, Panchal CJ (2016) Chitosan–bacterial nanocellulose nanofibrous structures for potential wound dressing applications. Cellulose 23(5):3089–3104

    CAS  Google Scholar 

  167. Zhang X, Guo R, Xu J, Lan Y, Jiao Y, Zhou C, Zhao Y (2015) Poly(L-lactide)/halloysite nanotube electrospun mats as dual-drug delivery systems and their therapeutic efficacy in infected full-thickness burns. J Biomater Appl 30(5):512–525

    CAS  PubMed  Google Scholar 

  168. Said SS, El-Halfawy OM, El-Gowelli HM, Aloufy AK, Boraei NA, El-Khordagui LK (2012) Bioburden-responsive antimicrobial PLGA ultrafine fibers for wound healing. Eur J Pharm Biopharm 80(1):85–94

    CAS  PubMed  Google Scholar 

  169. Yüksel E, Karakeçili A, Demirtaş TT, Gümüşderelioğlu M (2016) Preparation of bioactive and antimicrobial PLGA membranes by magainin II/EGF functionalization. Int J Biol Macromol 86:162–168

    PubMed  Google Scholar 

  170. Amina M, Hassan MS, Al Musayeib NM, Amna T, Khil MS (2014) Improved antibacterial activity of HAP garlanded PLGA ultrafine fibers incorporated with CuO: Synthesis and characterization. J Sol-Gel Sci Technol 71(1):43–49

    CAS  Google Scholar 

  171. Liu X, Nielsen LH, Kłodzińska SN, Nielsen HM, Qu H, Christensen LP, Rantanen J, Yang M (2018) Ciprofloxacin-loaded sodium alginate/poly (lactic-co-glycolic acid) electrospun fibrous mats for wound healing. Eur J Pharm Biopharm 123:42–49

    CAS  PubMed  Google Scholar 

  172. Haider A, Kwak S, Gupta KC, Kang I (2015) Antibacterial activity and cytocompatibility of PLGA/CuO hybrid nanofiber scaffolds prepared by electrospinning. J Nanomater 16(1):107

    Google Scholar 

  173. Preem L, Mahmoudzadeh M, Putrins M, Meos A, Laidmäe I, Romann T, Aruväli J, Härmas R, Koivuniemi A, Bunker A, Tenson T, Kogermann K (2017) Interactions between chloramphenicol, carrier polymers and bacteria—implications for designing electrospun drug delivery systems countering wound infection. Mol Pharm 14(12):4417–4430

    CAS  PubMed  Google Scholar 

  174. Pawar MD, Rathna GVN, Agrawal S, Kuchekar BS (2015) Bioactive thermoresponsive polyblend nanofiber formulations for wound healing. Mater Sci Eng C 48:126–137

    CAS  Google Scholar 

  175. Ahmed SM, Ahmed H, Tian C, Tu Q, Guo Y, Wang J (2016) Whey protein concentrate doped electrospun poly(epsilon-caprolactone) fibers for antibiotic release improvement. Colloids Surf B Biointerfaces 143:371–381

    CAS  PubMed  Google Scholar 

  176. Pásztor N, Rédai E, Szabó Z-I, Sipos E (2017) Preparation and characterization of levofloxacin-loaded nanofibers as potential wound dressings. Acta Med Marisiensis 63(2):66–69

    Google Scholar 

  177. Fazli Y, Shariatinia Z (2017) Controlled release of cefazolin sodium antibiotic drug from electrospun chitosan-polyethylene oxide nanofibrous mats. Mater Sci Eng C 71:641–652

    CAS  Google Scholar 

  178. Fazli Y, Shariatinia Z, Kohsari I, Azadmehr A, Pourmortazavi SM (2016) A novel chitosan-polyethylene oxide nanofibrous mat designed for controlled co-release of hydrocortisone and imipenem/cilastatin drugs. Int J Pharm 513(1–2):636–647

    CAS  PubMed  Google Scholar 

  179. El-Naggar ME, Abdelgawad AM, Salas C, Rojas OJ (2016) Curdlan in fibers as carriers of tetracycline hydrochloride: controlled release and antibacterial activity. Carbohydr Polym 154:194–203

    CAS  PubMed  Google Scholar 

  180. Unnithan AR, Gnanasekaran G, Sathishkumar Y, Lee YS, Kim CS (2014) Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing. Carbohydr Polym 102(1):884–892

    CAS  PubMed  Google Scholar 

  181. Chen X, Zhao R, Wang X, Li X, Peng F, Jin Z, Gao X, Yu J, Wang C (2017) Electrospun mupirocin loaded polyurethane fiber mats for anti-infection burn wound dressing application. J Biomater Sci Polym Ed 28(2):162–176

    CAS  PubMed  Google Scholar 

  182. Hacker C, Karahaliloglu Z, Seide G, Denkbas EB, Gries T (2014) Functionally modified, melt-electrospun thermoplastic polyurethane mats for wound-dressing applications. J Appl Polym Sci 131(8):1–12

    Google Scholar 

  183. Sabitha M, Sheeja R (2015) Preparation and characterization of ampicillin-incorporated electrospun polyurethane scaffolds for wound healing and infection control. Polym Eng Sci 55(3):541–548

    CAS  Google Scholar 

  184. Maharjan B, Joshi MK, Tiwari AP, Park CH, Kim CS (2017) In-situ synthesis of AgNPs in the natural/synthetic hybrid nanofibrous scaffolds: Fabrication, characterization and antimicrobial activities. J Mech Behav Biomed Mater 65:66–76

    CAS  PubMed  Google Scholar 

  185. Sebe I, Szabó B, Nagy ZK, Szabó D, Zsidai L, Kocsis B, Zelkó R (2013) Polymer structure and antimicrobial activity of polyvinylpyrrolidone-based iodine nanofibers prepared with high-speed rotary spinning technique. Int J Pharm 458(1):99–103

    CAS  PubMed  Google Scholar 

  186. Tsekova PB, Spasova MG, Manolova NE, Markova ND, Rashkov IB (2017) Electrospun curcumin-loaded cellulose acetate/polyvinylpyrrolidone fibrous materials with complex architecture and antibacterial activity. Mater Sci Eng C Mater Biol Appl 73:206–214

    CAS  PubMed  Google Scholar 

  187. Liakos I, Holban A, Carzino R, Lauciello S, Grumezescu A (2017) Electrospun fiber pads of cellulose acetate and essential oils with antimicrobial activity. Nanomaterials 7(4):1–10

    Google Scholar 

  188. Sultana N, Zainal A (2016) Cellulose acetate electrospun nanofibrous membrane : fabrication , characterization , drug loading and antibacterial properties. Bull Mater Sci 39(2):337–343

    CAS  Google Scholar 

  189. Serinçay H, Özkan S, Yilmaz N, Koçyiğit S, Uslu I, Gürcan S, Arisoy M (2013) PVA/PAA-based antibacterial wound dressing material with aloe vera. Polym-Plast Technol Eng 52(13):1308–1315

    Google Scholar 

  190. Rivero PJ, Urrutia A, Goicoechea J, Rodrıguez Y, Corres JM, Arregui FJ, Matıas IR (2013) An antibacterial submicron fiber mat with in situ synthesized silver nanoparticles. Polym Polym Compos 21(7):449–456

    Google Scholar 

  191. Khampieng T, Wnek GE, Supaphol P (2014) Electrospun DOXY-h loaded-poly(acrylic acid) nanofiber mats: In vitro drug release and antibacterial properties investigation. J Biomater Sci Polym Ed 25(12):1292–1305

    CAS  PubMed  Google Scholar 

  192. Sabitha M, Rajiv S (2015) Synthesis and characterization of biocompatible tigecycline imbibed electrospun poly ε-caprolactone urethane urea fibers. RSC Adv 5(3):2249–2257

    CAS  Google Scholar 

  193. He T, Wang J, Huang P, Zeng B, Li H, Cao Q, Zhang S, Luo Z, Deng DYB, Zhang H, Zhou W (2015) Electrospinning polyvinylidene fluoride fibrous membranes containing anti-bacterial drugs used as wound dressing. Colloids Surf B Biointerfaces 130:278–286

    CAS  PubMed  Google Scholar 

  194. Wei Q (2012) Functional nanofibers and their applications. Woodhead Publishing, Cambridge

    Google Scholar 

  195. Chou SF, Carson D, Woodrow KA (2015) Current strategies for sustaining drug release from electrospun nanofibers. J Control Release 220:584–591

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Jang CH, Cho YB, Jang YS, Kim MS, Kim GH (2015) Antibacterial effect of electrospun polycaprolactone/polyethylene oxide/vancomycin nanofiber mat for prevention of periprosthetic infection and biofilm formation. Int J Pediatr Otorhinolaryngol 79(8):1299–1305

    PubMed  Google Scholar 

  197. Verreck G, Chun I, Peeters J, Rosenblatt J, Brewster ME (2003) Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm Res 20(5):810–817

    CAS  PubMed  Google Scholar 

  198. World Union of Wound Healing Societies (WUWHS) (2008) Principles of best practice: wound infection in clinical practice. An international consensus. MEP Ltd., London

    Google Scholar 

  199. Williamson R, Collatz E, Gutmann L (1986) Mechanisms of action of beta-lactam antibiotics and mechanisms of non-enzymatic resistance. Presse Med 15(46):2282–2289

    CAS  PubMed  Google Scholar 

  200. Sundaran PS, Bhaskaran A, Alex ST, Prasad T, Haritha VH, Anie Y, Kumary TV, Anil Kumar PR (2017) Drug loaded microbeads entrapped electrospun mat for wound dressing application. J Mater Sci Mater Med 28(6):88

    PubMed  Google Scholar 

  201. Liu C, Shi H, Yang H, Yan S, Luan S, Li Y, Teng M, Khan AF, Yin J (2017) Fabrication of antibacterial electrospun nanofibers with vancomycin-carbon nanotube via ultrasonication assistance. Mater Design 120:128–134

    CAS  Google Scholar 

  202. Schindler PR, Teuber M (1975) Action of polymyxin B on bacterial membranes: morphological changes in the cytoplasm and in the outer membrane of Salmonella typhimurium and Escherichia coli B. Antimicrob Agents Chemother 8(1):95–104

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Ehrlich J, Bartz QR, Smith RM, Joslyn DA (1947) Chloromycetin, a new antibiotic from a soil actinomycete. Science 106(2757):417

    CAS  PubMed  Google Scholar 

  204. Magalhães ML, Blanchard JS (2009) Aminoglycosides: mechanisms of action and resistance. In: Mayers DL (ed) Antimicrobial drug resistance. Humana Press, Totowa, NJ, pp 171–181

    Google Scholar 

  205. Nandagopal S, Augustine R, George SC, Jayachandran VP, Kalarikkal N, Thomas S (2016) Gentamicin loaded electrospun Poly(ε-Caprolactone)/TiO2/nanocomposite membranes with antibacterial property against methicillin resistant staphylococcus aureus. Polym Plast Technol Eng 55(17):1785–1796

    Google Scholar 

  206. Parenti MA, Hatfield SM, Leyden JJ (1987) Mupirocin: a topical antibiotic with a unique structure and mechanism of action. Clin Pharm 6(10):761–770

    CAS  PubMed  Google Scholar 

  207. Dobie D, Gray J (2004) Fusidic acid resistance in Staphylococcus aureus. Arch Dis Child 89(1):74–77

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Aldred KJ, Kerns RJ, Osheroff N (2014) Mechanism of quinolone action and resistance. Biochemistry 53(10):1565–1574

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Li H, Williams GR, Wu J, Wang H, Sun X, Zhu LM (2017) Poly(N-isopropylacrylamide)/poly(L-lactic acid-co-ɛ-caprolactone) fibers loaded with ciprofloxacin as wound dressing materials. Mater Sci Eng C Mater Biol Appl 79:245–254

    CAS  PubMed  Google Scholar 

  210. Kester M, Karpa KD, Vrana KE (2012) Elsevier’s integrated review pharmacology. Elsevier/Saunders, Philadelphia, PA

    Google Scholar 

  211. Abbaspour M, Sharif Makhmalzadeh B, Rezaee B, Shoja S, Ahangari Z (2015) Evaluation of the antimicrobial effect of chitosan/polyvinyl alcohol electrospun nanofibers containing mafenide acetate. Jundishapur J Microbiol 8(10):e24239

    PubMed  PubMed Central  Google Scholar 

  212. Brennan SS, Leaper DJ (1985) The effect of antiseptics on the healing wound: a study using the rabbit ear chamber. Br J Surg 72(10):780–782

    CAS  PubMed  Google Scholar 

  213. FDA drug safety communication: FDA warns about rare but serious allergic reactions with the skin antiseptic chlorhexidine gluconate (2017) https://www.fda.gov/Drugs/DrugSafety/ucm530975.htm. Accessed 9 Jan 2018

  214. Gudapuri L (2017) Cross-resistance between antiseptic agents and antimicrobial agents. J Epidemiol Infect Dis Cross Resist 1(2):00009

    Google Scholar 

  215. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74(7):2171–2178

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Wang J, Windbergs M (2017) Functional electrospun fibers for the treatment of human skin wounds. Eur J Pharm Biopharm 119:283–299

    CAS  PubMed  Google Scholar 

  217. Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1–17

    Google Scholar 

  218. Dongargaonkar AA, Bowlin GL, Yang H (2013) Electrospun blends of gelatin and gelatin-dendrimer conjugates as a wound-dressing and drug-delivery platform. Biomacromolecules 14(11):4038–4045

    CAS  PubMed  Google Scholar 

  219. Abdelgawad AM, Hudson SM, Rojas OJ (2014) Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr Polym 100:166–178

    CAS  PubMed  Google Scholar 

  220. Badaraev AD, Nemoykina AL, Bolbasov EN, Tverdokhlebov SI (2017) PLLA scaffold modification using magnetron sputtering of the copper target to provide antibacterial properties. Resour Efficient Technol 3(2):204–211

    Google Scholar 

  221. Zhou B, Li Y, Deng H, Hu Y, Li B (2014) Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers. Colloids Surf B Biointerfaces 116:432–438

    CAS  PubMed  Google Scholar 

  222. McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12(1):147–179

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Liu X, Lin T, Gao Y, Xu Z, Huang C, Yao G, Jiang L, Tang Y, Wang X (2012) Antimicrobial electrospun nanofibers of cellulose acetate and polyester urethane composite for wound dressing. J Biomed Mater Res B 100(6):1556–1565

    Google Scholar 

  224. Szostak K, Czogalla A, Przybyło M, Langner M (2017) New lipid formulation of octenidine dihydrochloride. J Liposome Res 28:1–6

    Google Scholar 

  225. Jiang S, Ma BC, Reinholz J, Li Q, Wang J, KAI Z, Landfester K, Crespy D (2016) Efficient nanofibrous membranes for antibacterial wound dressing and UV protection. ACS Appl Mater Interfaces 8(44):29915–29922

    CAS  PubMed  Google Scholar 

  226. Zhang W, Ronca S, Mele E (2017) Electrospun nanofibres containing antimicrobial plant extracts. Nanomaterials 7(2):1–17

    Google Scholar 

  227. Adomavičiute E, Pupkevičiute S, Juškaite V, Žilius M, Stanys S, Pavilonis A, Briedis V (2017) Formation and investigation of electrospun PLA materials with propolis extracts and silver nanoparticles for biomedical applications. J Nanomater 2017:8612819

    Google Scholar 

  228. Yousefi I, Pakravan M, Rahimi H, Bahador A, Farshadzadeh Z, Haririan I (2017) An investigation of electrospun Henna leaves extract-loaded chitosan based nanofibrous mats for skin tissue engineering. Mater Sci Eng C 75:433–444

    CAS  Google Scholar 

  229. Motealleh B, Zahedi P, Rezaeian I, Moghimi M, Abdolghaffari AH, Zarandi MA (2014) Morphology, drug release, antibacterial, cell proliferation, and histology studies of chamomile-loaded wound dressing mats based on electrospun nanofibrous poly(ε-caprolactone)/polystyrene blends. J Biomed Mater Res B 102(5):977–987

    Google Scholar 

  230. Suwantong O, Pankongadisak P, Deachathai S, Supaphol P (2012) Electrospun poly(L-lactic acid) fiber mats containing a crude Garcinia cowa extract for wound dressing applications. J Polym Res 19(6):9896

    Google Scholar 

  231. Charernsriwilaiwat N, Rojanarata T, Ngawhirunpat T, Sukma M, Opanasopit P (2013) Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana extracts. Int J Pharm 452(1–2):333–343

    CAS  PubMed  Google Scholar 

  232. Ganesan P, Pradeepa P (2017) Development and characterization of nanofibrous mat from PVA/Tridax Procumbens (TP) leaves extracts. Wound Med 19:15–22

    Google Scholar 

  233. Liakos I, Rizzello L, Hajiali H, Brunetti V, Carzino R, Pompa PP, Athanassiou A, Mele E (2015) Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents. J Mater Chem B 3(8):1583–1589

    CAS  PubMed  Google Scholar 

  234. Liu L, Li X, Nagao M, Elias A, Narain R, Chung HJ (2017) A pH-indicating colorimetric tough hydrogel patch towards applications in a substrate for smart wound dressings. Polymers 9(11):558

    PubMed Central  Google Scholar 

  235. Hajiali H, Summa M, Russo D, Armirotti A, Brunetti V, Bertorelli R, Athanassiou A, Mele E (2016) Alginate–lavender nanofibers with antibacterial and anti-inflammatory activity to effectively promote burn healing. J Mater Chem B 4(9):1686–1695

    CAS  PubMed  Google Scholar 

  236. Reshmi C, Suja P, Manaf O, Sanu P, Sujith A (2018) Nanochitosan enriched poly ε-caprolactone electrospun wound dressing membranes: a fine tuning of physicochemical properties, hemocompatibility and curcumin release profile. Int J Biol Macromol 108:1261–1272

    Google Scholar 

  237. Simon A, Traynor K, Santos K, Blaser G, Bode U, Molan P (2009) Medical honey for wound care—still the “latest resort”? Evid Based Complement Alternat Med 6(2):165–173

    PubMed  Google Scholar 

  238. Arenbergerova M, Arenberger P, Bednar M, Kubat P, Mosinger J (2012) Light-activated nanofibre textiles exert antibacterial effects in the setting of chronic wound healing. Exp Dermatol 21(8):619–624

    CAS  PubMed  Google Scholar 

  239. El-Khordagui L, El-Sayed N, Galal S, El-Gowelli H, Omar H, Mohamed M (2017) Photosensitizer-eluting nanofibers for enhanced photodynamic therapy of wounds: a preclinical study in immunocompromized rats. Int J Pharm 520(1–2):139–148

    CAS  PubMed  Google Scholar 

  240. Wold KA, Damodaran VB, Suazo LA, Bowen RA, Reynolds MM (2012) Fabrication of biodegradable polymeric nanofibers with covalently attached no donors. ACS Appl Mater Interfaces 4(6):3022–3030

    CAS  PubMed  Google Scholar 

  241. Lowe A, Bills J, Verma R, Lavery L, Davis K, Balkus KJ (2015) Electrospun nitric oxide releasing bandage with enhanced wound healing. Acta Biomater 13:121–130

    CAS  PubMed  Google Scholar 

  242. Worley BV, Soto RJ, Kinsley PC, Schoenfisch MH (2016) Active release of nitric oxide-releasing dendrimers from electrospun polyurethane fibers. ACS Biomater Sci Eng 2(3):426–437

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Nogueira F, Karumidze N, Kusradze I, Goderdzishvili M, Teixeira P, Gouveia IC (2017) Immobilization of bacteriophage in wound-dressing nanostructure. Nanomedicine 13(8):2475–2484

    CAS  PubMed  Google Scholar 

  244. Jiang S, Wang H, Chu C, Ma X, Sun M, Jiang S (2015) Synthesis of antimicrobial Nisin-phosphorylated soybean protein isolate/poly(L-lactic acid)/ZrO2 membranes. Int J Biol Macromol 72:502–509

    CAS  PubMed  Google Scholar 

  245. Miao J, Pangule RC, Paskaleva EE, Hwang EE, Kane RS, Linhardt RJ, Dordick JS (2011) Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials 32(36):9557–9567

    CAS  PubMed  Google Scholar 

  246. Sadekuzzaman M, Yang S, MFR M, Ha SD (2015) Current and recent advanced strategies for combating biofilms. Compr Rev Food Sci Food Safety 14(4):491–509

    Google Scholar 

  247. Said SS, Aloufy AK, El-Halfawy OM, Boraei NA, El-Khordagui LK (2011) Antimicrobial PLGA ultrafine fibers: interaction with wound bacteria. Eur J Pharm Biopharm 79(1):108–118

    CAS  PubMed  Google Scholar 

  248. Abrigo M, Kingshott P, McArthur SL (2015) Bacterial response to different surface chemistries fabricated by plasma polymerization on electrospun nanofibers. Biointerphases 10(4):04A301

    PubMed  Google Scholar 

  249. Mitik-Dineva N, Stoddart PR, Crawford R, Ivanova EP, Mitik-Dineva N, Stoddart PR, Crawford R, Ivanova EP (2006) Adhesion of Bacteria. In: Akay M (ed) Wiley encyclopedia of biomedical engineering. John Wiley & Sons, Inc., Hoboken, NJ

    Google Scholar 

  250. Phair J, Newton L, McCormac C, Cardosi MF, Leslie R, Davis J (2011) A disposable sensor for point of care wound pH monitoring. Analyst 136(22):4692

    CAS  PubMed  Google Scholar 

  251. Matzeu G, Losacco M, Parducci E, Pucci A, Dini V, Romanelli M, Di Francesco F (2011) Skin temperature monitoring by a wireless sensor. 37th Annual Conference of the IEEE Industrial Electronics Society. IEEE, Piscataway, NJ, 2011, pp 3533–3535

    Google Scholar 

  252. Sharp D, Gladstone P, Smith RB, Forsythe S, Davis J (2010) Approaching intelligent infection diagnostics: carbon fibre sensor for electrochemical pyocyanin detection. Bioelectrochemistry 77(2):114–119

    CAS  PubMed  Google Scholar 

  253. Zhou J, Loftus AL, Mulley G, Toby A, Jenkins A (2010) A thin film detection/response system for pathogenic bacteria. J Am Chem Soc 132:6566–6570

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support by personal research project no. PUT1088. The Estonian Science Foundation and Estonian Ministry of Education and Research are thanked for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Kogermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Preem, L., Kogermann, K. (2018). Electrospun Antimicrobial Wound Dressings: Novel Strategies to Fight Against Wound Infections. In: Shiffman, M., Low, M. (eds) Chronic Wounds, Wound Dressings and Wound Healing. Recent Clinical Techniques, Results, and Research in Wounds, vol 6. Springer, Cham. https://doi.org/10.1007/15695_2018_133

Download citation

  • DOI: https://doi.org/10.1007/15695_2018_133

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10697-3

  • Online ISBN: 978-3-030-10698-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics