Skip to main content

Towards a Vertical Reference Frame for South America in View of the GGOS Specifications

  • Conference paper
IGFS 2014

Abstract

One of the objectives of the Geocentric Reference System for the Americas (SIRGAS) is to establish a unified Earth’s gravity field-related vertical reference system that meets the Global Geodetic Observing System (GGOS)’s requirements. This statement implies the homogenization and unification of the National Vertical Reference Systems (NVRS) existing in the SIRGAS and their integration into a International Height Reference System (IHRS). At present, different strategies based on the combination of local (e.g. levelling, terrestrial gravity data) and global observations (e.g. global models, GNSS positioning) are under consideration. However, most of them are not immediately applicable in South America due to the differences in the definition and realization of the local height systems. In this work, it is proposed an inventory of the available data and the implementation of a common metadata base in order to provide sufficient information for a consistent characterization of each NVRS. This structure must allow the identification of the different standards and specifications applied for the establishment of those systems and the needs of complementary actions for connecting them, including the standardization of the existing height data. The main goal of this approach is however the minimization of those inconsistencies produced by data unavailability, unknown discrepancies, different data collecting and processing strategies, accuracy, and other non-evaluated errors. Based on results for a case study (or test country) in South America, it is proposed a road map for the inventory of vertical systems established with metadata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amos MJ, Featherstone WE (2009) Unification of New Zealand’s local vertical datums: iterative gravimetric quasigeoid computations. J Geod 83(1):57–68. doi:10.1007/s00190-008-0232-y

    Article  Google Scholar 

  • Brovar VV (1972) A possible improvement in the accuracy of gravimetric results in geodesy. Sov Astron 15:1055–1058

    Google Scholar 

  • Brunini C, Sánchez L, Drewes H, Costa SMA, Mackern V, Martinez W, Seemüller W, Da Silva AL (2012) Improved analysis strategy and accessibility of the SIRGAS reference frame. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for planet earth, vol 136, IAG Symposia. Springer, Berlin, pp 3–10. doi:10.1007/978-3-642-20338-1_1

    Chapter  Google Scholar 

  • De Freitas SRC, Blitzkow D (1999) Altitudes e Geopotencial (In Portuguese). IGeS Bulletin N.9 – International Geoid Service, Junho, Milão, pp 47–62

    Google Scholar 

  • Drewes H, Sánchez L, Blitzkow D, de Freitas S (2002) Scientific foundations of the SIRGAS vertical reference system. In: Drewes H et al (eds) IAG Symposia, vol 124. Springer, Berlin, pp 297–301

    Google Scholar 

  • Ferreira VG, de Freitas SRC (2011) Geopotential numbers from GPS satellite surveying and disturbing potential model: a case study of Parana, Brazil. J Appl Geod 5:155–162. doi:10.1515/JAG.2011.016

    Google Scholar 

  • Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling, Ohio State University, Report No. 355

    Google Scholar 

  • Forsberg R, Tscherning CC (1981) The use of height data in gravity field approximation by collocation. J Geophys Res 86:7843–7854

    Article  Google Scholar 

  • Heck B (1989) A contribution to the scalar free boundary value problem of physical geodesy. Manuscr Geod 14:87–99

    Google Scholar 

  • Heck B (2011) A Brovar-type solution of the fixed geodetic boundary-value problem. Stud Geophys Geod 55:441–454

    Article  Google Scholar 

  • Heck B, Rummel R (1990) Strategies for solving the vertical datum problem using terrestrial and satellite geodetic data. IAG Symp Ser 104:116–128. doi:10.1007/978-1-4684-7098-7_14

    Google Scholar 

  • Heck B, Seitz K (1993) Effects of non-linearity in the geodetic boundary problems, DGK, Reihe A, Heft Nr. 109, München, 74p

    Google Scholar 

  • Hirt C, Featherstone WE, Marti U (2010) Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data. J Geod 84(9):557–567

    Article  Google Scholar 

  • Hofmann-Wellenhof B, Moritz H (2005) Physical geodesy. Springer, Wien

    Google Scholar 

  • Hugentobler U, Gruber T, Steigenberger P, Angermann D, Bouman J, Gerstl M, Richter B (2012) GGOS bureau for standards and conventions: integrated standards and conventions for geodesy. In: Kenyon SC, Pacino MC, Marti UJ (eds) Geodesy for planet earth, vol 136, IAG symposia. Springer, Berlin, pp 995–998. doi:10.1007/978-3-642-20338-1_124

    Chapter  Google Scholar 

  • Ihde J (2007) Inter-commission project 1.2: vertical reference frames. Final report for the period 2003–2007. In: IAG commission 1 – reference frames, Report 2003–2007. DGFI, Munich. Bulletin No. 20, pp 57–59

    Google Scholar 

  • Ihde J, Sanchez L (2005) A unified global height reference system as a basis for IGGOS. J Geodyn 40(4–5):400–413. doi:10.1016/j.jog.2005.06.015

    Article  Google Scholar 

  • Ihde J, Amos M, Heck B, Kersley B, Schöne T, Sánchez L, Drewes H (2007) Conventions for the definitions and realization of a conventional vertical reference system (CVRS). http://www.iho.int/mtg_docs/com_wg/IHOTC/IHOTC8/IHOTC8-3-6-1.pdf. Accessed June 2014

  • Kutterer H, Neilan R, Bianco G (2012) Global geodetic observing system (GGOS). In: Drewes H, Hornik H, Ádám J, Rózsa S (eds) The geodesist’s handbook 2012. Springer, Berlin; J Geod 86(10): 915–926. doi:10.1007/s00190-012-0584-1

    Google Scholar 

  • Moritz H (2000) Geodetic reference system 1980. J Geod 74:128–133. doi:10.1007/s001900050278

    Article  Google Scholar 

  • Plag H-P, Altamimi Z, Bettadpur S, Beutler G, Beyerle G, Cazenave A, Crossley D, Donnellan A, Forsberg R, Gross R, Hinderer J, Komjathy A, Mannucci C, Ma AJ, Noll C, Nothnagel A, Pavlis EC, Pearlman M, Poli P, Schreiber U, Senior K, Woodworth PL, Zerbini S, Zuffada C (2009) The goals, achievements, and tools of modern geodesy. In: Plag H-P, Pearlman M (eds) Global geodetic observing system. Meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin, p 18

    Google Scholar 

  • Rummel R, Teunissen P (1998) Height datum definition, height datum connection and the role of the geodetic boundary value problem. Bull Géod 62:477–498. doi:10.1007/BF02520239

    Article  Google Scholar 

  • Sacerdote F, Sansò F (1986) The scalar boundary value problem of physical geodesy. Manuscr Geod 11:15–28

    Google Scholar 

  • Sánchez L (2007) Definition and realization of the SIRGAS vertical reference system within a globally unified height system. In: Tregoning P, Rizos C (eds) Dynamic planet, vol 130, IAG Symposia. Springer, Berlin, pp 638–645

    Chapter  Google Scholar 

  • Sánchez L (2009) Strategy to establish a global vertical reference system. In: Drewes H (ed) Geodetic reference frames, vol 134, IAG Symposia. Springer, Berlin, pp 273–278. doi:10.1007/978-3-642-00860-3_42

    Chapter  Google Scholar 

  • Sánchez L (2012) Towards a vertical datum standardisation under the umbrella of global geodetic observing system. J Geod Sci. doi:10.2478/v10156-012-0002-x

    Google Scholar 

  • Sánchez L, Brunini C (2009) Achievements and challenges of SIRGAS. In: Drewes H (ed) Geodetic reference frames, vol 134, IAG Symposia. Springer, Berlin, pp 161–166. doi:10.1007/978-3-642-00860-3_25

    Chapter  Google Scholar 

  • Sansò F (1995) The long road from measurements to boundary value problems in physical geodesy. Manuscr Geod 20(5):326–344

    Google Scholar 

  • Xu P, Rummel R (1991) A quality investigation of global vertical datum connection. Netherlands Geodetic Commission. Publ Geod 34

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the 3rd International Gravity Field Service (IGFS) General Assembly in Shanghai, China for the invitation and opportunity. Also many thanks to CNPq trough Grant N. 301797/2008-0, SENESCYT and SIRGAS. In special, thank you very much to Laura Sánchez by the suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Galudht Santacruz Jaramillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Santacruz Jaramillo, A.G., de Freitas, S.R.C. (2015). Towards a Vertical Reference Frame for South America in View of the GGOS Specifications. In: Jin, S., Barzaghi, R. (eds) IGFS 2014. International Association of Geodesy Symposia, vol 144. Springer, Cham. https://doi.org/10.1007/1345_2015_208

Download citation

Publish with us

Policies and ethics