Skip to main content

Egyptian Geoid Using Best Estimated Response of the Earth’s Crust due to Topographic Loads

  • Conference paper
IGFS 2014

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 144))

Abstract

In this paper, the Egyptian gravimetric geoid is computed using the best estimated response of the earth’s crust due to the topographic loads. It has been proved that both the inverse isostasy approach and the direct isostasy approach (with Kelvin function \(\mathop{\mathrm{kei}}\nolimits x\)) give practically the same response of the earth’s crust due to topographic loads. The window remove-restore technique (Abd-Elmotaal and Kühtreiber, J Geod 77(1–2):77–85, 2003) has been used to avoid the double consideration of some of the topographic-isostatic masses in the neighbourhood of the computational point. The tailored geopotential model EGTGM2014 (Abd-Elmotaal, Egyptian geoid using ultra high-degree tailored geopotential model. Proceedings of the 25th international federation of surveyors FIG congress, 2014) has been used for the long wavelength contributions of the earth’s gravity field. The gravimetric geoid is computed for Egypt using Stokes’ integral in the frequency domain by 1-D FFT technique. For the sake of comparison, another geoid for Egypt using EGM2008 and Airy floating hypothesis has been computed. The computed geoids are scaled/fitted to the GPS-levelling derived geoid. The internal precision of the computed geoids is almost the same and it is at the level of 3 cm. The external accuracy of the geoid computed by the best estimated response of the earth’s crust is better by 4 dm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elmotaal HA (1991) Gravity anomalies based on the Vening Meinesz isostatic model and their statistical behaviour. Mitteilungen der geodätischen Institute der Technischen Universtät Graz 72

    Google Scholar 

  • Abd-Elmotaal HA (1993) Vening Meinesz Moho depths: traditional, exact and approximated. Manuscr Geodaet 18(4):171–181

    Google Scholar 

  • Abd-Elmotaal HA (1998) An alternative capable technique for the evaluation of geopotential from spherical harmonic expansions. Boll Geod Sci Affini 57(1):25–38

    Google Scholar 

  • Abd-Elmotaal HA (2003) Implementing seismic Moho depths in geoid computation. Surv Rev 37(289):235–245

    Article  Google Scholar 

  • Abd-Elmotaal HA (2004) Isostatic response of the earth’s crust derived by inverse isostasy. J Geodyn 37(2):139–153. doi:10.1016/j.jog.2004.01.002

    Article  Google Scholar 

  • Abd-Elmotaal HA (2013) Behaviour of earth’s crust due to topographic loads derived by inverse and direct isostasy. NRIAG J Astron Geophys 2:196–202. doi:10.1016/j.nrjag.2013.12.005

    Article  Google Scholar 

  • Abd-Elmotaal HA (2014) Egyptian geoid using ultra high-degree tailored geopotential model. In: Proceedings of the 25th international federation of surveyors FIG congress, Kuala Lumpur, 16–21 June 2014. www.fig.net/pub/fig2014/papers/ts02a/TS02A_abd-elmotaal_6856.pdf

  • Abd-Elmotaal HA, Abd-Elbakhy M, Ashry M (2013) 30 Meters digital height model for Egypt. In: VIII Hotine-Marussi symposium, Rome, 17–22 June 2013

    Google Scholar 

  • Abd-Elmotaal HA, Kühtreiber N (1999) Improving the geoid accuracy by adapting the reference field. Phys Chem Earth Pt A 24(1):53–59

    Article  Google Scholar 

  • Abd-Elmotaal HA, Kühtreiber N (2003) Geoid determination using adapted reference field, seismic Moho depths and variable density contrast. J Geod 77(1–2):77–85

    Article  Google Scholar 

  • Abramowitz M, Stegun IA (1965) Handbook of mathematical functions, with formulas, graphs, and mathematical tables. Dover Publications, New York

    Google Scholar 

  • Bechtel TD, Forsyth DW, Swain CJ (1987) Mechanisms of isostatic compensation in the vicinity of the east African rift, Kenya. Geophys J Roy Astron Soc 90:445–465

    Article  Google Scholar 

  • Brotchie JF, Silvester R (1969) On crustal flexure. J Geophys Res 74:5240–5252

    Article  Google Scholar 

  • Dorman LM, Lewis BTR (1970) Experimental isostasy: 1. Theory of the determination of the earth’s isostatic response to a concentrated load. J Geophys Res 75:3357–3365

    Google Scholar 

  • Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Ohio State University, Department of Geodetic Science and Surveying, Rep 355

    Google Scholar 

  • Haagmans R, de Min E, van Gelderen M (1993) Fast evaluation of convolution integrals on the sphere using 1D FFT, and a comparison with existing methods for Stokes’ integral. Manuscr Geodaet 18(4):227–241

    Google Scholar 

  • Hein GW, Eissfeller B, Ertel M, Hehl K, Jacoby W, Czerwek D (1989) On gravity prediction using density and seismic data. Institute of Astronomical and Physical Geodesy, University FAF Munich

    Google Scholar 

  • Lewis BTR, Dorman LM (1970) Experimental isostasy: 2. An isostatic model for the USA derived from gravity and topographic data. J Geophys Res 75:3367–3386

    Google Scholar 

  • Moritz H (1990) The figure of the Earth: theoretical geodesy and the Earth’s interior. Wichmann, Karlsruhe

    Google Scholar 

  • Pavlis N, Holmes S, Kenyon S, Factor J (2012) The development and evaluation of the earth gravitational model 2008 (EGM2008). J Geophys Res 117(B04406). doi:10.1029/2011JB008916

  • Rapp RH (1982) A Fortran program for the computation of gravimetric quantities from high degree spherical harmonic expansions. Ohio State University, Department of Geodetic Science, Rep 334

    Google Scholar 

  • Sideris MG, Li YC (1993) Gravity field convolutions without windowing and edge effects. Bull Geod 67(2):107–118. doi:10.1007/BF01371374

    Article  Google Scholar 

  • Tscherning CC, Knudsen P, Forsberg R (1994) Description of the GRAVSOFT package. Geophysical Institute, University of Copenhagen, Technical Report

    Google Scholar 

  • Turcotte DL, Schubert G (1982) Geodynamics: applications of continuum physics to geological problems. Wiley, New York

    Google Scholar 

  • Vening Meinesz FA (1940) Fundamental tables for regional isostatic reduction of gravity values. Publ Netherlands Acad Sci, sec 1 DI. 17(3):1–44

    Google Scholar 

Download references

Acknowledgements

This project was supported financially by the Science and Technology Development Fund (STDF), Egypt, Grant No. 366.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussein A. Abd-Elmotaal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Abd-Elmotaal, H.A. (2015). Egyptian Geoid Using Best Estimated Response of the Earth’s Crust due to Topographic Loads. In: Jin, S., Barzaghi, R. (eds) IGFS 2014. International Association of Geodesy Symposia, vol 144. Springer, Cham. https://doi.org/10.1007/1345_2015_194

Download citation

Publish with us

Policies and ethics