Skip to main content

Computational Studies of Biomembrane Systems: Theoretical Considerations, Simulation Models, and Applications

  • Chapter
  • First Online:
From Single Molecules to Nanoscopically Structured Materials

Part of the book series: Advances in Polymer Science ((POLYMER,volume 260))

Abstract

This chapter summarizes several approaches combining theory, simulation, and experiment that aim for a better understanding of phenomena in lipid bilayers and membrane protein systems, covering topics such as lipid rafts, membrane-mediated interactions, attraction between transmembrane proteins, and aggregation in biomembranes leading to large superstructures such as the light-harvesting complex of green plants. After a general overview of theoretical considerations and continuum theory of lipid membranes we introduce different options for simulations of biomembrane systems, addressing questions such as: What can be learned from generic models? When is it expedient to go beyond them? And, what are the merits and challenges for systematic coarse graining and quasi-atomistic coarse-grained models that ensure a certain chemical specificity?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Observe that 1/K 0 is not the optimal radius R opt of a spherical vesicle. Minimizing the energy per area with respect to K shows that instead this radius is given by \( {R}_{\mathrm{opt}}{K}_0=2+\overline{\kappa}/\kappa \).

  2. 2.

    It is easy to see that \( \delta h\equiv {\left\langle h{\left(\boldsymbol{r}\right)}^2\right\rangle}^{1/2}=L\sqrt{k_{\mathrm{B}}T/16{\uppi}^3\kappa}\approx L/100 \) (assuming κ ≃ 20 k B T), which is a few Ångström for typical simulation sizes.

  3. 3.

    Observe that the part of the membrane above the buckle and the part below the buckle can be connected through the periodic boundary of the simulation box.

  4. 4.

    The requirement that the Hamiltonian (1) is bounded below demands that \( -2\kappa \le \overline{\kappa}\le 0 \).

  5. 5.

    Unfortunately, in the first paper that discusses this force, Goulian et al. [253] claim that the prefactor is 12, a mistake that is not fixed during the prefactor-fixing in [254].

  6. 6.

    They used the same techniques that also led to the exact Eq. (14), only that in the cell model case the sign is evident from the expression.

References

  1. Smith R, Tanford C (1972) The critical micelle concentration of Lα-dipalmitoylphosphatidylcholine in water and water/methanol solutions. J Mol Biol 67(1):75–83

    CAS  Google Scholar 

  2. Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 72(2):1525–1568

    Google Scholar 

  3. Rawicz W, Olbrich K, McIntosh T, Needham D, Evans E (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79:328–339

    CAS  Google Scholar 

  4. Canham PB (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theoret Biol 26(1):61–81

    CAS  Google Scholar 

  5. Helfrich W (1973) Elastic properties of lipid bilayers—theory and possible experiments. Z Naturforsch C 28(11):693–703

    CAS  Google Scholar 

  6. Evans EA (1974) Bending resistance and chemically induced moments in membrane bilayers. Biophys J 14(12):923–931

    CAS  Google Scholar 

  7. Helfrich W (1974) The size of bilayer vesicles generated by sonication. Phys Lett A 50(2):115–116

    Google Scholar 

  8. Kreyszig E (1991) Differential geometry. Dover, New York

    Google Scholar 

  9. do Carmo M (1976) Differential geometry of curves and surfaces. Prentice Hall, Englewood Cliffs

    Google Scholar 

  10. Lipowsky R, Grotehans S (1993) Hydration versus protrusion forces between lipid bilayers. Europhys Lett 23:599–604

    CAS  Google Scholar 

  11. Lipowsky R, Grotehans S (1993) Renormalization of hydration forces by collective protrusion modes. Biophys Chem 49:27–37

    Google Scholar 

  12. Goetz R, Gompper G, Lipowsky R (1999) Mobility and elasticity of self-assembled membranes. Phys Rev Lett 82:221–224

    CAS  Google Scholar 

  13. Brandt EG, Edholm O (2010) Stretched exponential dynamics in lipid bilayer simulations. J Chem Phys 133:115101

    Google Scholar 

  14. Brandt EG, Braun AR, Sachs JN, Nagle JF, Edholm O (2011) Interpretation of fluctuation spectra in lipid bilayer simulations. Biophys J 100:2104–2111

    CAS  Google Scholar 

  15. Lindahl E, Edholm O (2000) Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys J 79(1):426–433

    CAS  Google Scholar 

  16. Owicki JC, Springgate MW, McConnell HM (1978) Theoretical study of protein–lipid interactions in bilayer membranes. Proc Natl Acad Sci USA 75:1616–1619

    CAS  Google Scholar 

  17. Owicki JC, McConnell HM (1979) Theory of protein–lipid and protein–protein interactions in bilayer membranes. Proc Natl Acad Sci USA 76:4750–4754

    CAS  Google Scholar 

  18. Huang HW (1986) Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys J 50:1061–1070

    CAS  Google Scholar 

  19. Sperotto MM, Mouritsen OG (1991) Monte Carlo simulation of lipid order parameter profiles near integral membrane proteins. Biophys J 59:261–270

    CAS  Google Scholar 

  20. Dan N, Pincus P, Safran SA (1993) Membrane-induced interactions between inclusions. Langmuir 9:2768–2771

    CAS  Google Scholar 

  21. Dan N, Berman A, Pincus P, Safran SA (1994) Membrane-induced interactions between inclusions. J Phys II (France) 4:1713

    CAS  Google Scholar 

  22. Aranda-Espinoza H, Berman A, Dan N, Pincus P, Safran S (1996) Interaction between inclusions embedded in membranes. Biophys J 71:648

    CAS  Google Scholar 

  23. Huang HW (1995) Elasticity of lipid bilayer interacting with amphiphilic helical peptides. J Phys II (France) 5:1427–1431

    CAS  Google Scholar 

  24. Nielsen C, Goulian M, Andersen OS (2000) Energetics of inclusion-induced bilayer deformations. Biophys J 74:1966–1983

    Google Scholar 

  25. Harroun TA, Heller WT, Weiss TM, Yang L, Huang HW (1999) Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys J 76:3176–3185

    CAS  Google Scholar 

  26. Nielsen C, Andersen OS (2000) Inclusion-induced bilayer deformations: effects of monolayer equilibrium curvature. Biophys J 79:2583–2604

    CAS  Google Scholar 

  27. Jensen MO, Mouritsen OG (2004) Lipids do influence protein function – the hydrophobic matching hypothesis revisited. Biochim Biophys Acta 1666:205–226

    CAS  Google Scholar 

  28. Brannigan G, Brown F (2006) A consistent model for thermal fluctuations and protein-induced deformations in lipid bilayer. Biophys J 90:1501

    CAS  Google Scholar 

  29. Brannigan G, Brown FLH (2007) Contributions of Gaussian curvature and nonconstant lipid volume to protein deformation of lipid bilayers. Biophys J 92:864–876

    CAS  Google Scholar 

  30. West B, Brown FLH, Schmid F (2009) Membrane-protein interactions in a generic coarse-grained model for lipid bilayers. Biophys J 96:101–115

    CAS  Google Scholar 

  31. Fournier JB (1998) Coupling between membrane tilt-difference and dilation: a new “ripple” instability and multiple crystalline inclusions phases. Europhys Lett 43:725–730

    CAS  Google Scholar 

  32. Fournier JB (1999) Microscopic membrane elasticity and interactions among membrane inclusions: interplay between the shape, dilation, tilt and tilt-difference modes. Eur Phys J B 11:261–272

    CAS  Google Scholar 

  33. Bohinc K, Kralj-Iglic V, May S (2003) Interaction between two cylindrical inclusions in a symmetric lipid bilayer. J Chem Phys 119:7435–7444

    CAS  Google Scholar 

  34. May ER, Narang A, Kopelevich DI (2007) Role of molecular tilt in thermal fluctuations of lipid membranes. Phys Rev E 76:021913

    Google Scholar 

  35. Watson MC, Penev ES, Welch PM, Brown FLH (2011) Thermal fluctuations in shape, thickness, and molecular orientation in lipid bilayers. J Chem Phys 135:244701

    Google Scholar 

  36. Watson MC, Morriss-Andrews A, Welch PM, Brown FLH (2013) Thermal fluctuations in shape, thickness, and molecular orientation in lipid bilayers II: finite surface tensions. J Chem Phys 139:084706 doi: 10.1063/1.4818530

    Google Scholar 

  37. Neder J, West B, Nielaba P, Schmid F (2010) Coarse-grained simulations of membranes under tension. J Chem Phys 132:115101

    Google Scholar 

  38. Li J, Pastor KA, Shi AC, Schmid F, Zhou J (2013) Elastic properties and line tension of self-assembled bilayer membranes. Phys Rev E 88:012718 doi: 10.1103/PhysRevE.88.012718

    Google Scholar 

  39. Scott H (2002) Modeling the lipid component of membranes. Curr Opin Struct Biol 12(4):495–502

    CAS  Google Scholar 

  40. Saiz L, Bandyopadhyay S, Klein ML (2002) Towards an understanding of complex biological membranes from atomistic molecular dynamics simulations. Biosci Rep 22(2):151–173

    CAS  Google Scholar 

  41. Saiz L, Klein ML (2002) Computer simulation studies of model biological membranes. Acc Chem Res 35(6):482–489

    CAS  Google Scholar 

  42. Berkowitz ML (2009) Detailed molecular dynamics simulations of model biological membranes containing cholesterol. Biochim Biophys Acta Biomembr 1788(1):86–96

    CAS  Google Scholar 

  43. Niemelä PS, Hyvonen MT, Vattulainen I (2009) Atom-scale molecular interactions in lipid raft mixtures. Biochim Biophys Acta 1788(1):122–135

    Google Scholar 

  44. Gompper G, Kroll DM (1997) Network models of fluid, hexatic and polymerized membranes. J Phys Condens Matt 9(42):8795–8834

    CAS  Google Scholar 

  45. Gompper G, Kroll D (1998) Membranes with fluctuating topology: Monte Carlo simulations. Phys Rev Lett 81(11):2284–2287

    CAS  Google Scholar 

  46. Kumar PBS, Gompper G, Lipowsky R (2001) Budding dynamics of multicomponent membranes. Phys Rev Lett 86(17):3911–3914

    Google Scholar 

  47. Noguchi H, Gompper G (2004) Fluid vesicles with viscous membranes in shear flow. Phys Rev Lett 93(25):258102

    Google Scholar 

  48. Atzberger PJ, Kramer PR, Peskin CS (2007) A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales. J Comput Phys 224(2):1255–1292

    Google Scholar 

  49. Brown FLH (2008) Elastic Modeling of biomembranes and lipid bilayers. Ann Rev Phys Chem 59:685–712

    CAS  Google Scholar 

  50. Venturoli M, Sperotto MM, Kranenburg M, Smit B (2006) Mesoscopic models of biological membranes. Phys Rep 437(1–2):1–54

    CAS  Google Scholar 

  51. Müller M, Katsov K, Schick M (2006) Biological and synthetic membranes: what can be learned from a coarse-grained description? Phys Rep 434(5–6):113–176

    Google Scholar 

  52. Brannigan G, Lin L, Brown F (2006) Implicit solvent simulation models for biomembranes. Eur Biophys J 35(2):104–124

    CAS  Google Scholar 

  53. Marrink Siewert J, de Vries AH, Tieleman DP (2009) Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim Biophys Acta Biomembr 1788(1):149–168

    CAS  Google Scholar 

  54. Bennun SV, Hoopes MI, Xing C, Faller R (2009) Coarse-grained modeling of lipids. Chem Phys Lipids 159(2):59–66

    CAS  Google Scholar 

  55. Deserno M (2009) Mesoscopic membrane physics: concepts, simulations, and selected applications. Macromol Rapid Comm 30(9–10):752–771

    CAS  Google Scholar 

  56. Noguchi H (2009) Membrane simulation models from nanometer to micrometer scale. J Phys Soc Jpn 78(4):041007

    Google Scholar 

  57. Schmid F (2009) Toy amphiphiles on the computer: What can we learn from generic models? Macromol Rapid Comm 30:741–751

    CAS  Google Scholar 

  58. Müller-Plathe F (2002) Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. Chem Phys Chem 3(9):754–769

    Google Scholar 

  59. Izvekov S, Both GA (2005) Multiscale coarse graining of liquid-state systems. J Chem Phys 123(13):134105

    Google Scholar 

  60. Praprotnik M, Delle Site L, Kremer K (2005) Adaptive resolution molecular-dynamics simulation: changing the degrees of freedom on the fly. J Chem Phys 123(22):224106

    Google Scholar 

  61. Praprotnik M, Delle Site L, Kremer K (2007) A macromolecule in a solvent: adaptive resolution molecular dynamics simulation. J Chem Phys 126(13):134902

    Google Scholar 

  62. Praprotnik M, Site LD, Kremer K (2008) Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Ann Rev Phys Chem 59(1):545–571

    CAS  Google Scholar 

  63. Delgado-Buscalioni R, Kremer K, Praprotnik M (2008) Concurrent triple-scale simulation of molecular liquids. J Chem Phys 128(11):114110

    Google Scholar 

  64. Noid WG, Chu JW, Ayton GS, Krishna V, Izvekov S, Voth GA, Das A, Andersen HC (2008) The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. J Chem Phys 128(24):244114

    CAS  Google Scholar 

  65. Noid WG, Liu P, Wang Y, Chu JW, Ayton GS, Izvekov S, Andersen HC, Voth GA (2008) The multiscale coarse-graining method. II. Numerical implementation for coarse-grained molecular models. J Chem Phys 128(24):244115

    CAS  Google Scholar 

  66. Das A, Andersen HC (2009) The multiscale coarse-graining method. III. A test of pairwise additivity of the coarse-grained potential and of new basis functions for the variational calculation. J Chem Phys 131(3):034102

    Google Scholar 

  67. Delgado-Buscalioni R, Kremer K, Praprotnik M (2009) Coupling atomistic and continuum hydrodynamics through a mesoscopic model: application to liquid water. J Chem Phys 131(24):244107

    Google Scholar 

  68. Peter C, Kremer K (2009) Multiscale simulation of soft matter systems – from the atomistic to the coarse-grained level and back. Soft Matter 5:4357–4366

    CAS  Google Scholar 

  69. Poblete S, Praprotnik M, Kremer K, Delle Site L (2010) Coupling different levels of resolution in molecular simulations. J Chem Phys 132(11):114101

    Google Scholar 

  70. Voth GA (ed) (2008) Coarse-graining of condensed phase and biomolecular systems, 1st edn. CRC, Boca Raton

    Google Scholar 

  71. Rühle V, Junghans C, Lukyanov A, Kremer K, Andrienko D (2009) Versatile object-oriented toolkit for coarse-graining applications. J Chem Theory Comput 5(12):3211–3223

    Google Scholar 

  72. Lu L, Voth GA (2012) The multiscale coarse-graining method. In: Rice SA, Dinner AR (eds) Advances in chemical physics, vol 149. Wiley, Hoboken, pp 47–81 doi: 10.1002/9781118180396.ch2

    Google Scholar 

  73. Cooke IR, Kremer K, Deserno M (2005) Tunable generic model for fluid bilayer membranes. Phys Rev E 72(1):011506

    Google Scholar 

  74. Cooke IR, Deserno M (2005) Solvent-free model for self-assembling fluid bilayer membranes: stabilization of the fluid phase based on broad attractive tail potentials. J Chem Phys 123(22):224710

    Google Scholar 

  75. Cooke IR, Deserno M (2006) Coupling between lipid shape and membrane curvature. Biophys J 91(2):487–495

    CAS  Google Scholar 

  76. Hu M, Briguglio JJ, Deserno M (2012) Determining the Gaussian curvature modulus of lipid membranes in simulations. Biophys J 102(6):1403–1410

    CAS  Google Scholar 

  77. Schmid F, Düchs D, Lenz O, West B (2007) A generic model for lipid monolayers, bilayers, and membranes. Comp Phys Comm 177(1–2):168

    CAS  Google Scholar 

  78. Düchs D, Schmid F (2001) Phase behavior of amphiphilic monolayers: theory and simulations. J Phys Cond Matt 13:4853

    Google Scholar 

  79. Lenz O, Schmid F (2005) A simple computer model for liquid lipid bilayers. J Mol Liquid 117(1–3):147–152

    CAS  Google Scholar 

  80. Lenz O, Schmid F (2007) Structure of symmetric and asymmetric ripple phases in lipid bilayers. Phys Rev Lett 98:058104

    Google Scholar 

  81. Meinhardt S, Vink R, Schmid F (2013) Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers. Proc Natl Acad Sci USA 12:4476–4481

    Google Scholar 

  82. Pike L (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47:1597–1598

    CAS  Google Scholar 

  83. Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108(2):750–760

    CAS  Google Scholar 

  84. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    CAS  Google Scholar 

  85. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4(5):819–834

    CAS  Google Scholar 

  86. López CA, Rzepiela AJ, de Vries AH, Dijkhuizen L, Huenenberger PH, Marrink SJ (2009) Martini coarse-grained force field: extension to carbohydrates. J Chem Theory Comput 5(12):3195–3210

    Google Scholar 

  87. López EA, Sovova Z, van Eerden FJ, de Vries AH, Marrink SJ (2013) MARTINI force field parameters for glycolipids. J Chem Theory Comput 9(3):1694–1708

    Google Scholar 

  88. Lee S (1962) Spiderman, Amazing fantasy # 15. Marvel Comics, New York

    Google Scholar 

  89. Brochard F, Lennon JF (1975) Frequency spectrum of flicker phenomenon in erythrocytes. J Phys (France) 36(11):1035–1047

    Google Scholar 

  90. Brochard F, De Gennes PG, Pfeuty P (1976) Surface tension and deformations of membrane structures: relation to two-dimensional phase transitions. J Phys (France) 37:1099

    Google Scholar 

  91. Schneider MB, Jenkins JT, Webb WW (1984) Thermal fluctuations of large cylindrical phospholipid-vesicles. Biophys J 45(5):891–899

    CAS  Google Scholar 

  92. Schneider MB, Jenkins JT, Webb WW (1984) Thermal fluctuations of large quasi-spherical bimolecular phospholipid-vesicles. Biophys J 45(9):1457–1472

    CAS  Google Scholar 

  93. Faucon JF, Mitov MD, Méléard P, Bivas I, Bothorel P (1989) Bending elasticity and thermal fluctuations of lipid-membranes—theoretical and experimental requirements. J Phys (France) 50(17):2389–2414

    Google Scholar 

  94. Henriksen J, Rowat AC, Ipsen JH (2004) Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity. Eur Biophys J 33(8):732–741

    CAS  Google Scholar 

  95. Evans E, Rawicz W (1990) Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys Rev Lett 64(17):2094–2097

    CAS  Google Scholar 

  96. Liu YF, Nagle JF (2004) Diffuse scattering provides material parameters and electron density profiles of biomembranes. Phys Rev E 69(4):040901

    Google Scholar 

  97. Chu N, Kučerka N, Liu YF, Tristram-Nagle S, Nagle JF (2005) Anomalous swelling of lipid bilayer stacks is caused by softening of the bending modulus. Phys Rev E 71(4):041904

    Google Scholar 

  98. Tristram-Nagle S, Nagle JF (2007) HIV-1 fusion peptide decreases bending energy and promotes curved fusion intermediates. Biophys J 93(6):2048–2055

    CAS  Google Scholar 

  99. Pan J, Tristram-Nagle S, Kučerka N, Nagle JF (2008) Temperature dependence of structure, bending rigidity, and bilayer interactions of dioleoylphosphatidylcholine bilayers. Biophys J 94(1):117–124

    CAS  Google Scholar 

  100. Pfeiffer W, König S, Legrand JF, Bayerl T, Richter D, Sackmann E (1993) Neutron spin echo study of membrane undulations in lipid multibilayers. Europhys Lett 23(6):457–462

    CAS  Google Scholar 

  101. Takeda T, Kawabata Y, Seto H, Komura S, Ghosh SK, Nagao M, Okuhara D (1999) Neutron spin-echo investigations of membrane undulations in complex fluids involving amphiphiles. J Phys Chem Solids 60(8–9):1375–1377

    CAS  Google Scholar 

  102. Rheinstädter MC, Häußler W, Salditt T (2006) Dispersion relation of lipid membrane shape fluctuations by neutron spin-echo spectrometry. Phys Rev Lett 97(4):048103

    Google Scholar 

  103. Watson MC, Brown FLH (2010) Interpreting membrane scattering experiments at the mesoscale: the contribution of dissipation within the bilayer. Biophys J 98(6):L09–L11

    Google Scholar 

  104. Bo L, Waugh RE (1989) Determination of bilayer membrane bending stiffness by tether formation from giant, thin-walled vesicles. Biophys J 55(3):509–517

    CAS  Google Scholar 

  105. Cuvelier D, Derényi I, Bassereau P, Nassoy P (2005) Coalescence of membrane tethers: experiments, theory, and applications. Biophys J 88(4):2714–2726

    CAS  Google Scholar 

  106. Tian A, Baumgart T (2008) Sorting of lipids and proteins in membrane curvature gradients. Biophys J 96(7):2676–2688

    Google Scholar 

  107. Ayton G, Voth GA (2002) Bridging microscopic and mesoscopic simulations of lipid bilayers. Biophys J 83(6):3357–3370

    CAS  Google Scholar 

  108. Farago O (2003) “Water-free” computer model for fluid bilayer membranes. J Chem Phys 119(1):596–605

    CAS  Google Scholar 

  109. Wang ZJ, Frenkel D (2005) Modeling flexible amphiphilic bilayers: a solvent-free off-lattice Monte Carlo study. J Chem Phys 122:234711

    Google Scholar 

  110. Wang ZJ, Deserno M (2010) A systematically coarse-grained solvent-free model for quantitative phospholipid bilayer simulation. J Phys Chem B 114(34):11207–11220

    CAS  Google Scholar 

  111. Shiba H, Noguchi H (2011) Estimation of the bending rigidity and spontaneous curvature of fluid membranes in simulations. Phys Rev E 84:031926

    Google Scholar 

  112. Watson MC, Brandt EG, Welch PM, Brown FLH (2012) Determining biomembrane bending rigidities from simulations of modest size. Phys Rev Lett 109:028102

    Google Scholar 

  113. Harmandaris VA, Deserno M (2006) A novel method for measuring the bending rigidity of model lipid membranes by simulating tethers. J Chem Phys 125(20):204905

    Google Scholar 

  114. Arkhipov A, Yin Y, Schulten K (2008) Four-scale description of membrane sculpting by bar domains. Biophys J 95(6):2806–2821

    CAS  Google Scholar 

  115. Noguchi H (2011) Anisotropic surface tension of buckled fluid membranes. Phys Rev E 83:061919

    Google Scholar 

  116. Hu M, Diggins IVP, Deserno M (2013) Determining the bending modulus of a lipid membrane by simulating buckling. J Chem Phys 138:214110. doi:10.1063/1.4808077

    Google Scholar 

  117. Siegel DP, Kozlov MM (2004) The Gaussian curvature elastic modulus of n-monomethylated dioleoylphosphatidylethanolamine: relevance to membrane fusion and lipid phase behavior. Biophys J 87(1):366–374

    CAS  Google Scholar 

  118. Siegel DP (2006) Determining the ratio of the Gaussian curvature and bending elastic moduli of phospholipids from QII phase unit cell dimensions. Biophys J 91(2):608–618

    CAS  Google Scholar 

  119. Siegel DP (2008) The Gaussian curvature elastic energy of intermediates in membrane fusion. Biophys J 95(11):5200–5215

    CAS  Google Scholar 

  120. Templer RH, Khoo BJ, Seddon JM (1998) Gaussian curvature modulus of an amphiphile monolayer. Langmuir 14(26):7427–7434

    CAS  Google Scholar 

  121. Baumgart T, Das S, Webb WW, Jenkins JT (2005) Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys J 89(2):1067–1080

    CAS  Google Scholar 

  122. Semrau S, Idema T, Holtzer L, Schmidt T, Storm C (2008) Accurate determination of elastic parameters for multicomponent membranes. Phys Rev Lett 100(8):088101

    Google Scholar 

  123. Hu M, de Jong DH, Marrink SJ, Deserno M (2013) Gaussian curvature elasticity determined from global shape transformations and local stress distributions: a comparative study using the MARTINI model. Farad Discuss 161:365–382

    CAS  Google Scholar 

  124. Taupin C, Dvolaitzky M, Sauterey C (1975) Osmotic-pressure induced pores in phospholipid vesicles. Biochemistry 14(21):4771–4775

    CAS  Google Scholar 

  125. Zhelev DV, Needham D (1993) Tension-stabilized pores in giant vesicles—determination of pore-size and pore line tension. Biochim Biophys Acta 1147(1):89–104

    CAS  Google Scholar 

  126. Genco I, Gliozzi A, Relini A, Robello M, Scalas E (1993) Osmotic-pressure induced pores in phospholipid vesicles. Biochim Biophys Acta 1149(1):10–18

    CAS  Google Scholar 

  127. Karatekin E, Sandre O, Guitouni H, Borghi N, Puech PH, Brochard-Wyart F (2003) Cascades of transient pores in giant vesicles: line tension and transport. Biophys J 84(3):1734–1749

    CAS  Google Scholar 

  128. Tolpekina TV, den Otter WK, Briels WJ (2004) Simulations of stable pores in membranes: system size dependence and line tension. J Chem Phys 121(16):8014–8020

    CAS  Google Scholar 

  129. Wohlert J, den Otter WK, Edholm O, Briels WJ (2006) Free energy of a trans-membrane pore calculated from atomistic molecular dynamics simulations. J Chem Phys 124(15):154905

    CAS  Google Scholar 

  130. Jiang FY, Bouret Y, Kindt JT (2004) Molecular dynamics simulations of the lipid bilayer edge. Biophys J 87(1):182–192

    CAS  Google Scholar 

  131. Wang ZJ, Deserno M (2010) Systematic implicit solvent coarse-graining of bilayer membranes: lipid and phase transferability of the force field. New J Phys 12:095004

    Google Scholar 

  132. Wang H, Hu D, Zhang P (2013) Measuring the spontaneous curvature of bilayer membranes by molecular dynamics simulations. Commun Comput Phys 13:1093–1106

    Google Scholar 

  133. Helfrich W (1985) Effect of thermal undulations on the rigidity of fluid membranes and interfaces. J Phys France 46(7):1263–1268

    CAS  Google Scholar 

  134. Peliti L, Leibler S (1985) Effects of thermal fluctuations on systems with small surface tension. Phys Rev Lett 54:1690–1693

    CAS  Google Scholar 

  135. Förster D (1986) On the scale dependence, due to thermal fluctuations, of the elastic properties of membranes. Phys Lett A 114(3):115–120

    Google Scholar 

  136. Kleinert H (1986) Thermal softening of curvature elasticity in membranes. Phys Lett A 114(5):263–268

    Google Scholar 

  137. Schmid F (2013) Fluctuations in lipid bilayers: are they understood? Biophys Rev Lett 8:1–20 doi:10.1142/S1793048012300113

    Google Scholar 

  138. Nelson DR, Peliti L (1987) Fluctuations in membranes with crystalline and hexatic order. J Phys (France) 48(1):1085–1092. doi:10.1051/jphys:019870048070108500

    CAS  Google Scholar 

  139. Le Doussal P, Radzihovsky L (1992) Self-consistent theory of polymerized membranes. Phys Rev Lett 69(8):1209–1211

    Google Scholar 

  140. Park JM, Lubensky TC (1995) Topological defects on fluctuating surfaces: general properties and the Kosterlitz–Thouless transition. Phys Rev E 53(3):2648–2664

    Google Scholar 

  141. Park JM (1996) Renormalization of fluctuating tilted hexatic membranes. Phys Rev E 56(7):R47–R50

    Google Scholar 

  142. West B, Schmid F (2010) Fluctuations and elastic properties of lipid membranes in the fluid and gel state: a coarse-grained Monte Carlo study. Soft Matter 6:1275–1280

    CAS  Google Scholar 

  143. Kramer L (1971) Theory of light scattering from fluctuations of membranes and monolayers. J Chem Phys 55:2097–2105

    CAS  Google Scholar 

  144. Seifert U, Langer SA (1993) Viscous modes of fluid bilayer membranes. Europhys Lett 23(1):71–76

    Google Scholar 

  145. Zilman AG, Granek R (1996) Undulations and dynamic structure factor of membranes. Phys Rev Lett 77:4788–4791

    CAS  Google Scholar 

  146. Fromherz P (1983) Lipid-vesicle structure: size control by edge-active agents. Chem Phys Lett 94:259–266

    CAS  Google Scholar 

  147. van Kampen NG (2007) Stochastic processes in physics and chemistry, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  148. Helfrich W (1981) Physics of defects. North Holland, Amsterdam

    Google Scholar 

  149. Helfrich W (1994) Lyotropic lamellar phases. J Phys Condens Matter 6:A79–A92

    CAS  Google Scholar 

  150. Szleifer I, Kramer D, Ben-Shaul A, Gelbart WM, Safran SA (1990) Molecular theory of curvature elasticity in surfactant films. J Chem Phys 92:6800–6817

    CAS  Google Scholar 

  151. Rowlinson JS, Widom B (2002) Molecular theory of capillarity, 1st edn. Dover, New York

    Google Scholar 

  152. Gompper G, Klein S (1992) Ginzburg-Landau theory of aqueous surfactant solutions. J Phys II (France) 2:1725–1744

    CAS  Google Scholar 

  153. Diamant H (2011) Model-free thermodynamics of fluid vesicles. Phys Rev E 84(6):0611203

    Google Scholar 

  154. Capovilla R, Guven J (2002) Stresses in lipid membranes. J Phys A Math Gen 35:6233–6247

    CAS  Google Scholar 

  155. Capovilla R, Guven J (2004) Stress and geometry of lipid vesicles. J Phys Condens Matter 16:S2187–S2191

    CAS  Google Scholar 

  156. Farago O, Pincus P (2004) Statistical mechanics of bilayer membrane with a fixed projected area. J Chem Phys 120:2934–2950

    CAS  Google Scholar 

  157. Guven J (2004) Membrane geometry with auxiliary variables and quadratic constraints. J Phys A Math Gen 37:L313–L319

    Google Scholar 

  158. Müller MM, Deserno M, Guven J (2005) Geometry of surface-mediated interactions. Europhys Lett 69:482–488

    Google Scholar 

  159. Müller MM, Deserno M, Guven J (2005) Interface-mediated interactions between particles: a geometrical approach. Phys Rev E 72:061407

    Google Scholar 

  160. Müller MM, Deserno M, Guven J (2007) Balancing torques in membrane-mediated interactions: exact results and numerical illustrations. Phys Rev E 76:011921. doi:10.1103/PhysRevE.76.011921

    Google Scholar 

  161. Deserno M, Müller MM, Guven J (2007) Contact lines for fluid surface adhesion. Phys Rev E 76:011605. doi:10.1103/PhysRevE.76.011605

    Google Scholar 

  162. Schmid F (2011) Are stress-free membranes really “tensionless”? Europhys Lett 95:28008

    Google Scholar 

  163. Deuling H, Helfrich W (1976) The curvature elasticity of fluid membranes: a catalogue of vesicle shapes. J Phys (France) 37:1335–1345

    CAS  Google Scholar 

  164. David F, Leibler S (1991) Vanishing tension of fluctuating membranes. J Phys II (France) 1:959–976

    CAS  Google Scholar 

  165. Cai W, Lubensky TC, Nelson P, Powers T (1994) Measure factors, tension, and correlations of fluid membranes. J Phys II (France) 4:931–949

    CAS  Google Scholar 

  166. Jähnig F (1996) What is the surface tension of a lipid bilayer membrane? Biophys J 71:1348–1349

    Google Scholar 

  167. Marsh D (1997) Renormalization of the tension and area expansion modulus in fluid membranes. Biophys J 73:865–869

    CAS  Google Scholar 

  168. Farago O, Pincus P (2003) The effect of thermal fluctuations on Schulman area elasticity. Eur Phys J E 11:399–408

    CAS  Google Scholar 

  169. Imparato A (2006) Surface tension in bilayer membranes with fixed projected area. J Chem Phys 124:154714

    Google Scholar 

  170. Stecki J (2008) Balance of forces in simulated bilayers. J Phys Chem B 112(14):4246–4252

    CAS  Google Scholar 

  171. Fournier JB, Barbetta C (2008) Direct calculation from the stress tensor of the lateral surface tension of fluctuating fluid membranes. Phys Rev Lett 100:078103

    Google Scholar 

  172. Fournier JB (2012) Comment on “are stress-free membranes really ‘tensionless’?” by Schmid F. Europhys Lett 97:18001

    Google Scholar 

  173. Schmid F (2012) Reply to Comment on “are stress-free membranes really ‘tensionless’?”. Europhys Lett 97:18002

    Google Scholar 

  174. Farago O (2011) Mechanical surface tension governs membrane thermal fluctuations. Phys Rev E 84:051944

    Google Scholar 

  175. Marrink SJ, Mark AE (2001) Effect of undulations on surface tension in simulated bilayers. J Phys Chem B 105:6122–6127

    CAS  Google Scholar 

  176. Loison C, Mareschal M, Kremer K, Schmid F (2003) Thermal fluctuations in a lamellar phase of a binary amphiphile-solvent mixture: a molecular-dynamics study. J Chem Phys 119(13):138–13148

    Google Scholar 

  177. Ahmed SN, Brown DA, London E (1997) On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: Physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36(36):10944–10953

    CAS  Google Scholar 

  178. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    CAS  Google Scholar 

  179. Brown DA, London E (1998) Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164(2):103–114

    CAS  Google Scholar 

  180. Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Ann Rev Cell Develop Biol 14:111–136

    CAS  Google Scholar 

  181. Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275(23):17221–17224

    CAS  Google Scholar 

  182. Singer SJ, Nicolson GK (1972) Fluid mosaic model of structure of cell-membranes. Science 175(4023):720–731

    CAS  Google Scholar 

  183. Munro S (2003) Lipid rafts: elusive or illusive? Cell 115(4):377–388

    CAS  Google Scholar 

  184. Hancock JF (2006) Lipid rafts: contentious only from simplistic standpoints. Nat Rev Mol Cell Biol 7:456–462

    CAS  Google Scholar 

  185. Leslie M (2011) Do lipid rafts exist? Science 334:1046–1047

    CAS  Google Scholar 

  186. Vereb G, Szöllosi J, Matko J, Nagy P, Farkas T, Vigh L, Matyus L, Waldmann TA, Damjanovich S (2003) Dynamic, yet structured: the cell membranes three decades after the Singer-Nicolson model. Proc Natl Acad Sci USA 100:8053–8058

    CAS  Google Scholar 

  187. Veatch SL, Keller SL (2003) Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys J 85(5):3074–3083

    CAS  Google Scholar 

  188. Veatch SL, Keller SL (2005) Seeing spots: complex phase behavior in simple membranes. Biochim Biophys Acta 1746:172–185

    CAS  Google Scholar 

  189. Pralle A, Keller P, Florin EL, Simons K, Hörber JKH (2000) Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 148:997–1007

    CAS  Google Scholar 

  190. Turner MS, Sens P, Socci ND (2005) Nonequilibrium raft-like membrane domains under continuous recycling. Phys Rev Lett 95:168301

    Google Scholar 

  191. Yethiraj A, Weisshaar JC (2007) Why are lipid rafts not observed in vivo? Biophys J 93:3113–3119

    CAS  Google Scholar 

  192. Simons K, Vaz WLC (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269–295

    CAS  Google Scholar 

  193. Brewster R, Pincus PA, Safran SA (2009) Hybrid lipids as a biological surface-active component. Biophys J 97:1087–1094

    CAS  Google Scholar 

  194. Yamamoto T, Brewster R, Safran SA (2010) Chain ordering of hybrid lipids can stabilize domains in saturated/hybrid/cholesterol lipid membranes. Europhys Lett 91:28002

    Google Scholar 

  195. Veatch SL, Soubias O, Keller SL, Gawrisch K (2007) Critical fluctuations in domain-forming lipid mixtures. Proc Natl Acad Sci USA 104(17):650–655

    Google Scholar 

  196. Honerkamp-Smith AR, Veatch SL, Keller SL (2009) An introduction to critical points for biophysicists: observations of compositional heterogeneity in lipid membranes. Biochim Biophys Acta 1788:53–63

    CAS  Google Scholar 

  197. Ipsen JH, Karlström G, Mouritsen OB, Wennerström H, Zuckermann MJ (1987) Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta 905:162–172

    CAS  Google Scholar 

  198. Sankaram MB, Thompson TE (1991) Cholesterol-induced fluid-phase immiscibility in membranes. Proc Natl Acad Sci USA 88:8686–8690

    CAS  Google Scholar 

  199. Katsaras J, Tristram-Nagle S, Liu Y, Headrick RL, Fontes E, Mason PC, Nagle JF (2000) Clarification of the ripple phase of lecithin bilayers using fully hydrated, aligned samples. Phys Rev E 61:5668

    CAS  Google Scholar 

  200. Sengupta K, Raghunathan VA, Katsaras J (2003) Structure of the ripple phase of phospholipid multibilayers. Phys Rev E 68(3):031710

    Google Scholar 

  201. Koynova R, Caffrey M (1994) Phases and phase transitions of the hydrated phosphatidylethanolamines. Chem Phys Lipids 69:1–34

    CAS  Google Scholar 

  202. Koynova R, Caffrey M (1998) Phases and phase transitions of the phosphatidylcholines. Biochimica Biophysica Acta Rev Biomembr 1376:91–145

    CAS  Google Scholar 

  203. Kranenburg M, Smit B (2005) Phase behavior of model lipid bilayers. J Phys Chem B 109:6553–6563

    CAS  Google Scholar 

  204. de Vries AH, Yefimov S, Mark AE, Marrink SJ (2005) Molecular structure of the lecithin ripple phase. Proc Natl Acad Sci USA 102:5392–5396

    Google Scholar 

  205. Sun X, Gezelter JD (2008) Dipolar ordering in the ripple phases of molecular-scale models of lipid membranes. J Phys Chem B 112:1968–1975

    CAS  Google Scholar 

  206. Jamroz D, Kepczynski M, Nowakowska M (2010) Molecular structure of the dioctadecyldimethylammonium bromide (DODAB) bilayer. Langmuir 26(15):076–15079

    Google Scholar 

  207. Chen R, Poger D, Mark AE (2011) Effect of high pressure on fully hydrated DPPC and POPC bilayers. J Phys Chem B 115:1038–1044

    CAS  Google Scholar 

  208. Dolezel S (2010) Computer simulation of lipid bilayers. Diploma thesis, University of Mainz

    Google Scholar 

  209. Brazovskii SA (1975) Phase transitions of an isotropic system to a nonuniform state. Soviet Phys JETP 41:85–89

    Google Scholar 

  210. Marsh D (2008) Protein modulation of lipids, and vice-versa, in membranes. Biochim Biophys Acta 1778:1545–1575

    CAS  Google Scholar 

  211. Benjamini A, Smit B (2012) Robust driving forces for transmembrane helix packing. Biophys J 103:1227–1235

    CAS  Google Scholar 

  212. Cantor RS (1997) Lateral pressures in cell membranes: a mechanism for modulation of protein function. J Phys Chem B 101:1723–1725

    CAS  Google Scholar 

  213. Elliott J, Needham D, Dilger J, Haydon D (1983) The effects of bilayer thickness and tension on gramicidin single-channel lifetimes. Biochim Biophys Acta 735:95–103

    CAS  Google Scholar 

  214. Botelho AV, Huber T, Sakmar TP, Brown MF (2006) Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes. Biophys J 91:4464–4477

    CAS  Google Scholar 

  215. Antonny B (2006) Membrane deformation by protein coats. Curr Opin Cell Biol 18(4):386–394

    CAS  Google Scholar 

  216. Lee AG (2005) How lipids and proteins interact in a membrane: a molecular approach. Mol Biosyst 3:203–212

    Google Scholar 

  217. Gil T, Sabra MC, Ipsen JH, Mouritsen OG (1997) Wetting and capillary condensation as means of protein organization in membranes. Biophys J 73(4):1728–1741

    CAS  Google Scholar 

  218. Gil T, Ipsen JH, Mouritsen OG, Sabra MC, Sperotto MM, Zuckermann MJ (1998) Theoretical analysis of protein organization in lipid membranes. Biochim Biophys Acta 1376(3):245–266

    CAS  Google Scholar 

  219. Reynwar BJ, Deserno M (2008) Membrane composition-mediated protein–protein interactions. Biointerphases 3:FA117–FA125

    Google Scholar 

  220. Machta BB, Veatch SL, Sethna JP (2012) Critical Casimir forces in cellular membranes. Phys Rev Lett 109:138101

    Google Scholar 

  221. May S, Ben-Shaul A (1999) Molecular theory of lipid-protein interaction and the Lalpha-HII transition. Biophys J 76(2):751–767

    CAS  Google Scholar 

  222. May S (2000) Protein-induced bilayer deformations: the lipid tilt degree of freedom. Eur Biophys J 29(1):17–28

    CAS  Google Scholar 

  223. Kozlovsky Y, Zimmerberg J, Kozlov MM (2004) Orientation and interaction of oblique cylindrical inclusions embedded in a lipid monolayer: a theoretical model for viral fusion peptides. Biophys J 87(2):999–1012

    CAS  Google Scholar 

  224. Deserno M (2009) Membrane elasticity and mediated interactions in continuum theory: a differential geometric approach. In: Faller R, Jue T, Longo ML, Risbud SH (eds) Biomembrane frontiers: nanostructures, models, and the design of life, vol 2. Springer, New York, pp 41–74

    Google Scholar 

  225. May S (2000) Theories on structural perturbations of lipid bilayers. Curr Opin Colloid Interface Sci 5:244–249

    CAS  Google Scholar 

  226. Bloom M, Evans E, Mouritsen OG (1991) Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Quart Rev Biophys 24(3):293–297

    CAS  Google Scholar 

  227. Killian JA (1998) Hydrophobic mismatch between proteins and lipids in membranes. Biochim Biophys Acta 1376:401–416

    CAS  Google Scholar 

  228. Dumas F, Lebrun MC, Tocanne JF (1999) Is the protein/lipid hydrophobic matching principle relevant to membrane organization and functions? FEBS Lett 458:271–277

    CAS  Google Scholar 

  229. Harroun TA, Heller WT, Weiss TM, Yang L, Huang HW (1999) Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys J 76:937–945

    CAS  Google Scholar 

  230. De Planque MRR, Killian JA (2003) Protein-lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring (review). Mol Membr Biol 20:271–284

    Google Scholar 

  231. Marsh D (2008) Energetics of hydrophobic matching in lipid–protein interactions. Biophys J 94:3996–4013

    CAS  Google Scholar 

  232. Cybulski LE, de Mendoza D (2011) Bilayer hydrophobic thickness and integral membrane protein function. Curr Protein Pept Sci 12:760–766

    CAS  Google Scholar 

  233. Strandberg E, Esteban-Martin S, Ulrich AS, Salgado J (2012) Hydrophobic mismatch of mobile transmembrane helices: merging theory and experiments. Biochim Biophys Acta 1818:1242–1249

    CAS  Google Scholar 

  234. Venturoli M, Smit B, Sperotto MM (2005) Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins. Biophys J 88:1778

    CAS  Google Scholar 

  235. Park SH, Opella SJ (2005) Tilt angle of a trans-membrane helix is determined by hydrophobic mismatch. J Mol Biol 350:310–318

    CAS  Google Scholar 

  236. Holt A, Killian JA (2010) Orientation and dynamics of transmembrane peptides: the power of simple models. Eur Biophys J 39:609–621

    CAS  Google Scholar 

  237. Strandberg E, Tremouilhac P, Wadhwani P, Ulrich AS (2009) Synergistic transmembrane insertion of the heterodimeric PGLA/magainin 2 complex studied by solid-state NMR. Biochim Biophys Acta 1788:1667–1679

    CAS  Google Scholar 

  238. Schmidt U, Weiss M (2010) Hydrophobic mismatch-induced clustering as a primer for protein sorting in the secretory pathway. Biophys Chem 151:34–38

    CAS  Google Scholar 

  239. Harzer U, Bechinger B (2000) Alignment of lysine-anchored membrane peptides under conditions of hydrophobic mismatch: A CD, 15N and 31P solid-state NMR spectroscopy investigation. Biochemistry 39(13):106–13114

    Google Scholar 

  240. Özdirekcan S, Rijkers DTS, Liskamp RMJ, Killian JA (2005) Influence of flanking residues on tilt and rotation angles of transmembrane peptides in lipid bilayers. a solid-state 2H NMR study. Biochemistry 44:1004–1012

    Google Scholar 

  241. Vostrikov VV, Grant CV, Daily AE, Opella SJ, Koeppe RE II (2008) Comparison of “polarization inversion with spin exchange at magic angle” and “geometric analysis of labeled alanines” methods for transmembrane helix alignment. J Am Chem Soc 130(12):584–12585

    Google Scholar 

  242. Chiang C, Shirinian L, Sukharev S (2005) Capping transmembrane helices of MscL with aromatic residues changes channel response to membrane stretch. Biochemistry 44(12):589–12597

    Google Scholar 

  243. Vostrikov VV, Koeppe RE II (2011) Response of GWALP transmembrane peptides to changes in the tryptophan anchor positions. Biochemistry 50:7522–7535

    CAS  Google Scholar 

  244. Neder J, Nielaba P, West B, Schmid F (2012) Interactions of membranes with coarse-grain proteins: a comparison. New J Phys 14:125017

    Google Scholar 

  245. Mouritsen OG, Bloom M (1984) Mattress model of lipid-protein interactions in membranes. Biophys J 36:141–153

    Google Scholar 

  246. Fattal DR, Ben-Shaul A (1993) A molecular model for lipid-protein interaction in membranes: the role of hydrophobic mismatch. Biophys J 65:1795–1809

    CAS  Google Scholar 

  247. Fattal DR, Ben-Shaul A (1995) Lipid chain packing and lipid–protein interaction in membranes. Phys A 220:192–216

    CAS  Google Scholar 

  248. Cordomi A, Perez JJ (2007) Molecular dynamics simulations of rhodopsin in different one-component lipid bilayers. J Phys Chem B 111:7052–7063

    CAS  Google Scholar 

  249. Neder J, West B, Nielaba P, Schmid F (2010) Membrane-mediated protein–protein interaction: a Monte Carlo study. Curr Nanosci 7:656–666

    Google Scholar 

  250. Schmidt U, Guigas G, Weiss M (2008) Cluster formation of transmembrane proteins due to hydrophobic mismatching. Phys Rev Lett 101:128104

    Google Scholar 

  251. de Meyer FJM, Venturoli M, Smit B (2008) Molecular simulations of lipid-mediated protein–protein interactions. Biophys J 95:1851–1865

    Google Scholar 

  252. Koltover I, Rädler JO, Safinya CR (1999) Membrane mediated attraction and ordered aggregation of colloidal particles bound to giant phospholipid vesicles. Phys Rev Lett 82:1991–1994

    CAS  Google Scholar 

  253. Goulian M, Bruinsma R, Pincus P (1993) Long-range forces in heterogeneous fluid membranes. Europhys Lett 22:145

    CAS  Google Scholar 

  254. Goulian M, Bruinsma R, Pincus P (1993) Long-range forces in heterogeneous fluid membranes: erratum. Europhys Lett 23:155

    Google Scholar 

  255. Fournier JB, Dommersnes PG (1997) Comment on “long-range forces in heterogeneous fluid membranes”. Europhys Lett 39(6):681

    CAS  Google Scholar 

  256. Dommersnes P, Fournier JB (1999) N-body study of anisotropic membrane inclusions: membrane mediated interactions and ordered aggregation. Eur Phys J E 12:9–12

    CAS  Google Scholar 

  257. Dommersnes P, Fournier J (2002) The many-body problem for anisotropic membrane inclusions and the self-assembly of “saddle” defects into an “egg carton”. Biophys J 83:2898–2905

    CAS  Google Scholar 

  258. Fournier JB, Dommersnes PG, Galatola P (2003) Dynamin recruitment by clathrin coats: a physical step? C R Biol 326:467–476

    CAS  Google Scholar 

  259. Wu SHW, McConnell HM (1975) Phase separations in phospholipid membranes. Biochemistry 14(4):847–854

    CAS  Google Scholar 

  260. Gebhardt C, Gruler H, Sackmann E (1977) Domain-structure and local curvature in lipid bilayers and biological membranes. Z Naturforsch C 32(7–8):581–596

    CAS  Google Scholar 

  261. Markin VS (1981) Lateral organization of membranes and cell shapes. Biophys J 36(1):1–19

    CAS  Google Scholar 

  262. Andelman D, Kawakatsu T, Kawasaki K (1992) Equilibrium shape of two-component unilamellar membranes and vesicles. Europhys Lett 19(1):57–62

    CAS  Google Scholar 

  263. Seifert U (1993) Curvature-induced lateral phase segregation in two-component vesicles. Phys Rev Lett 70:1335–1338

    CAS  Google Scholar 

  264. Bretscher MS (1972) Asymmetrical lipid bilayer structure for biological membranes. Nature 236(61):11–12

    CAS  Google Scholar 

  265. Daleke DL (2007) Phospholipid flippases. J Biol Chem 282(2):821–825

    CAS  Google Scholar 

  266. Deserno M (2004) Elastic deformation of a fluid membrane upon colloid binding. Phys Rev E 69:031903

    Google Scholar 

  267. Reynwar BJ, Deserno M (2011) Membrane-mediated interactions between circular particles in the strongly curved regime. Soft Matter 7:8567–8575

    CAS  Google Scholar 

  268. Weikl TR, Kozlov MM, Helfrich W (1998) Interaction of conical membrane inclusions: effect of lateral tension. Phys Rev E 57:6988–6995. doi:10.1103/PhysRevE.57.6988

    CAS  Google Scholar 

  269. Yolcu C, Deserno M (2012) Membrane-mediated interactions between rigid inclusions: an effective field theory. Phys Rev E 86:031906

    Google Scholar 

  270. Rothstein IZ (2003) TASI lectures on effective field theories. Available from arXiv.org, ArXiv:hep-ph/0308266

    Google Scholar 

  271. Goldberger WD, Rothstein IZ (2006) An effective field theory of gravity for extended objects. Phys Rev D 73:104029

    Google Scholar 

  272. Porto RA, Ross A, Rothstein IZ (2011) Spin induced multipole moments for the gravitational wave flux from binary inspirals to third post-newtonian order. J Cosmol Astropart Phys 3:009

    Google Scholar 

  273. Galley CR, Leibovich AK, Rothstein IZ (2010) Finite size corrections to the radiation reaction force in classical electrodynamics. Phys Rev Lett 105:094802

    Google Scholar 

  274. Yolcu C, Rothstein IZ, Deserno M (2011) Effective field theory approach to Casimir interactions on soft matter surfaces. Europhys Lett 96:20003

    Google Scholar 

  275. Yolcu C, Rothstein IZ, Deserno M (2012) Effective field theory approach to fluctuation-induced forces between colloids at an interface. Phys Rev E 85:011140

    Google Scholar 

  276. Dommersnes PG, Fournier JB (1999) Casimir and mean-field interactions between membrane inclusions subject to external torques. Europhys Lett 46:256

    CAS  Google Scholar 

  277. Kardar M, Golestanian R (1999) The “friction” of vacuum, and other fluctuation-induced forces. Rev Mod Phys 71:1233–1245

    CAS  Google Scholar 

  278. Park J-M, Lubensky TC (1996) Interactions between membrane inclusions on fluctuating membranes. J Phys I France 6(9):1217–1235

    CAS  Google Scholar 

  279. Helfrich W, Weikl TR (2001) Two direct methods to calculate fluctuation forces between rigid objects embedded in fluid membranes. Eur Phys J E 5:423–439

    CAS  Google Scholar 

  280. Gosselin HP, Morbach H, Müller MM (2012) Interface-mediated interactions: entropic forces of curved membranes. Phys Rev E 83:051921

    Google Scholar 

  281. Brakke KA (1992) The surface evolver. Exp Math 1:141–165

    Google Scholar 

  282. Reynwar BJ, Illya G, Harmandaris VA, Müller MM, Kremer K, Deserno M (2007) Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447:461–464

    CAS  Google Scholar 

  283. Kim KS, Neu J, Oster G (1998) Curvature-mediated interactions between membrane proteins. Biophys J 75(5):2274–2291

    CAS  Google Scholar 

  284. Kim KS, Neu JC, Oster GF (1999) Many-body forces between membrane inclusions: a new pattern-formation mechanism. Europhys Lett 48(1):99–105

    CAS  Google Scholar 

  285. Kim KS, Chou T, Rudnick J (2008) Degenerate ground-state lattices of membrane inclusions. Phys Rev E 78:011401. doi:10.1103/PhysRevE.78.011401

    CAS  Google Scholar 

  286. Müller MM, Deserno M (2010) Cell model approach to membrane mediated protein interactions. Progr Theor Phys Suppl 184:351–363

    Google Scholar 

  287. Auth T, Gompper G (2009) Budding and vesiculation induced by conical membrane inclusions. Phys Rev E 80:031901. doi:10.1103/PhysRevE.80.031901

    Google Scholar 

  288. Johnson ME, Head-Gordon T, Louis AA (2007) Representability problems for coarse-grained water potentials. J Chem Phys 126(14):144509

    Google Scholar 

  289. Nielsen SO, Lopez CF, Srinivas G, Klein ML (2003) A coarse grain model for n-alkanes parameterized from surface tension data. J Chem Phys 119:7043–7049

    CAS  Google Scholar 

  290. Mognetti BM, Yelash L, Virnau P, Paul W, Binder K, Müller M, Macdowell LG (2008) Efficient prediction of thermodynamic properties of quadrupolar fluids from simulation of a coarse-grained model: the case of carbon dioxide. J Chem Phys 128:104501

    CAS  Google Scholar 

  291. DeVane R, Shinoda W, Moore PB, Klein ML (2009) Transferable coarse grain nonbonded interaction model for amino acids. J Chem Theory Comput 5:2115–2124

    CAS  Google Scholar 

  292. Tschöp W, Kremer K, Batoulis J, Burger T, Hahn O (1998) Simulation of polymer melts. I. coarse-graining procedure for polycarbonates. Acta Polym 49(2–3):61–74

    Google Scholar 

  293. Lyubartsev AP, Laaksonen A (1995) Calculation of effective interaction potentials from radial-distribution functions – a reverse Monte-Carlo approach. Phys Rev E 52:3730–3737

    CAS  Google Scholar 

  294. Reith D, Putz M, Müller-Plathe F (2003) Deriving effective mesoscale potentials from atomistic simulations. J Comp Chem 24:1624–1636

    CAS  Google Scholar 

  295. Peter C, Delle Site L, Kremer K (2008) Classical simulations from the atomistic to the mesoscale: coarse graining an azobenzene liquid crystal. Soft Matter 4:859–869

    CAS  Google Scholar 

  296. Murtola T, Karttunen M, Vattulainen I (2009) Systematic coarse graining from structure using internal states: application to phospholipid/cholesterol bilayer. J Chem Phys 131:055101

    Google Scholar 

  297. Lyubartsev A, Mirzoev A, Chen LJ, Laaksonen A (2010) Systematic coarse-graining of molecular models by the Newton inversion method. Faraday Discuss 144:43–56

    CAS  Google Scholar 

  298. Savelyev A, Papoian GA (2009) Molecular renormalization group coarse-graining of electrolyte solutions: application to aqueous NaCl and KCl. J Phys Chem B 113:7785–7793

    CAS  Google Scholar 

  299. Megariotis G, Vyrkou A, Leygue A, Theodorou DN (2011) Systematic coarse graining of 4-cyano-4′-pentylbiphenyl. Ind Eng Chem Res 50:546–556

    CAS  Google Scholar 

  300. Mukherjee B, Site LD, Kremer K, Peter C (2012) Derivation of a coarse grained model for multiscale simulation of liquid crystalline phase transitions. J Phys Chem B 116:8474–8484

    CAS  Google Scholar 

  301. Shell MS (2008) The relative entropy is fundamental to multiscale and inverse thermodynamic problems. J Chem Phys 129:144108

    Google Scholar 

  302. Silbermann JR, Klapp SHL, Schoen M, Chennamsetty N, Bock H, Gubbins KE (2006) Mesoscale modeling of complex binary fluid mixtures: towards an atomistic foundation of effective potentials. J Chem Phys 124:074105

    Google Scholar 

  303. Allen EC, Rutledge GC (2009) Evaluating the transferability of coarse-grained, density-dependent implicit solvent models to mixtures and chains. J Chem Phys 130:034904

    Google Scholar 

  304. Mullinax JW, Noid WG (2009) Extended ensemble approach for deriving transferable coarse-grained potentials. J Chem Phys 131:104110

    Google Scholar 

  305. Villa A, Peter C, van der Vegt NFA (2010) Transferability of nonbonded interaction potentials for coarse-grained simulations: benzene in water. J Chem Theory Comput 6:2434–2444

    CAS  Google Scholar 

  306. Izvekov S, Chung PW, Rice BM (2010) The multiscale coarse-graining method: assessing its accuracy and introducing density dependent coarse-grain potentials. J Chem Phys 133:064109

    Google Scholar 

  307. Shen JW, Li C, van der Vegt NFA, Peter C (2011) Transferability of coarse grained potentials: implicit solvent models for hydrated ions. J Chem Theory Comput 7:1916–1927

    CAS  Google Scholar 

  308. Brini E, Marcon V, van der Vegt NFA (2011) Conditional reversible work method for molecular coarse graining applications. Phys Chem Chem Phys 13(10):468–10474

    Google Scholar 

  309. Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gul L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292

    CAS  Google Scholar 

  310. Standfuss R, van Scheltinga ACT, Lamborghini M, Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J 24:919–928

    Google Scholar 

  311. Schmid VH (2008) Light-harvesting complexes of vascular plants. Cell Mol Life Sci 65(22):3619–3639

    CAS  Google Scholar 

  312. Yang C, Horn R, Paulsen H (2003) The light-harvesting chlorophyll a/b complex can be reconstituted in vitro from its completely unfolded apoprotein. Biochemistry 42:4527–4533

    CAS  Google Scholar 

  313. Horn R, Grundmann G, Paulsen H (2007) Consecutive binding of chlorophylls a and b during the assembly in vitro of light-harvesting chlorophyll-a/b protein (LHCIIb). J Mol Biol 366:1045–1054

    CAS  Google Scholar 

  314. Dockter C, Volkov A, Bauer C, Polyhach Y, Joly-Lopez Z, Jeschke G, Paulsen H (2009) Refolding of the integral membrane protein light-harvesting complex II monitored by pulse EPR. Proc Natl Acad Sci USA 106(44):18485–18490

    CAS  Google Scholar 

  315. Horn R, Paulsen H (2004) Early steps in the assembly of light-harvesting chlorophyll a/b complex. J Biol Chem 279(43):44400–44406

    CAS  Google Scholar 

  316. Dockter C, Müller AH, Dietz C, Volkov A, Polyhach Y, Jeschke G, Paulsen H (2012) Rigid core and flexible terminus: structure of solubilized light-harvesting chlorophyll a/b complex (LHCII) measured by EPR. J Biol Chem 287:2915–2925. doi:10.1074/jbc.M111.307728

    CAS  Google Scholar 

  317. Garab G, Lohner K, Laggner P, Farkas T (2000) Self-regulation of the lipid content of membranes by non-bilayer lipids: a hypothesis. Trends Plant Sci 5(11):489–494

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the many coworkers and colleagues who have contributed to the research reported here, in particular Ira Cooke, Jemal Guven, Vagelis Harmandaris, Gregoria Illya, Martin Müller, Benedict Reynwar, Ira Rothstein, Cem Yolcu, Frank Brown, Olaf Lenz, Sebastian Meinhardt, Peter Nielaba, Beate West, Ananya Debnath, Christoph Globisch, Christoph Junghans, Shahoua Ding, Sabine Wiegand, Sandra Ritz, and Eva Sinner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Deserno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deserno, M., Kremer, K., Paulsen, H., Peter, C., Schmid, F. (2013). Computational Studies of Biomembrane Systems: Theoretical Considerations, Simulation Models, and Applications. In: Basché, T., Müllen, K., Schmidt, M. (eds) From Single Molecules to Nanoscopically Structured Materials. Advances in Polymer Science, vol 260. Springer, Cham. https://doi.org/10.1007/12_2013_258

Download citation

Publish with us

Policies and ethics