Skip to main content

Charge Transport in Organic Semiconductor Devices

  • Chapter
  • First Online:
Organic Electronics

Part of the book series: Advances in Polymer Science ((POLYMER,volume 223))

Abstract

In this chapter, we investigate the charge transport properties in organic semiconductor materials and devices, in the frame of variable range hopping theory. We discuss the dependences of mobility on temperature, carrier concentration, doping and trapping. We also present the charge transport model in organic light-emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiang CK, Fincher CR, Parker JYW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiamid AG (1977) Electrical conductivity in doped polyacetylene. Phys Rev Lett 39(17):1098–1101

    Article  CAS  Google Scholar 

  2. Shaw JM, Seidler PF (2001) Organic electronics: introduction. IBM J Res Dev 45(1):3–10

    Article  CAS  Google Scholar 

  3. Scott JC, Malliaras GG (1999) In conjugated polymers. Wiley, Germany

    Google Scholar 

  4. Deboer C (2004) Organic LED display. www.audioholics.com

  5. Miller A, Abrahams E (1960) Impurity conduction at low concentrations. Phys Rev 120(3):745–755

    Article  CAS  Google Scholar 

  6. Horowitz G (2000) Physics of organic field-effect transistors. Semiconducting Polymers. Wiley, Weinheim, pp 463–514

    Google Scholar 

  7. Li L, Meller G, Kosina H (2007) Carrier concentration dependence of the mobility in organic semiconductors. Synth Met 157:243–246

    Article  CAS  Google Scholar 

  8. Bässler H (1993) Charge transport in disordered organic photoconductors. Phys Stat Sol(b) 175:15–55

    Article  Google Scholar 

  9. Vissenberg MCJM, Matters M (1998) Theory of the field-effect mobility in amorphous organic transistors. Phys Rev B 57(20):12964–12967

    Article  CAS  Google Scholar 

  10. Ambegaokar V, Halperlin BI, Langer JS (1971) Hopping conductivity in disordered systems. Phys Rev B 4(8):2612–2620

    Article  Google Scholar 

  11. Coehoorn R, Pasveer WF, Bobbert PA, Michels MAJ (2005) Charge-carrier concentration dependence of the hopping mobility in organic materials with Gaussian disorder. Phys Rev B 72:1552061–1552063

    Article  Google Scholar 

  12. Zvyagin IP, Plyukhin AV (1990) Low temperature relaxation in disordered organic semiconductors. Mos Univ Phys Bull 45:84–88

    Google Scholar 

  13. Corless RM, Gonner GH, Hare DEG (1996) On the lambert W function. Adv Comput Math 5(1):329–359

    Article  Google Scholar 

  14. Bässler H (1990) Hopping and related phenomena: advances in disordered semiconductors. World Scientific, Singapore

    Google Scholar 

  15. Movaghar B, Grunewald M, Bässler H, Wurtz D (1986) Diffusion and relaxation of energy in disordered organic and inorganic materials. Phys Rev B 33(8):5545–5554

    Article  CAS  Google Scholar 

  16. Tanase C, Meijer EJ, Blom PWM, de Leeuw DM (2003) Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys Rev Lett 91(21):216601–216604

    Article  CAS  Google Scholar 

  17. Leempoel P, Acuna MC, Fan FF, Bard AJ (1982) Semiconductor electrodes. 43. The effect of light intensity and iodine doping on the stabilization of n-silicon by phthalocyanine films. J Phys Chem 86:1396–1400

    Article  CAS  Google Scholar 

  18. Li L, Meller G, Kosina H (2007) Analytical conductivity model for doped organic semiconductors. J Appl Phys 101:033716, 1–4

    CAS  Google Scholar 

  19. Li L, Meller G, Kosina H (2007) Influence of traps on charge transport in organic semiconductors. Solid State Electron 51:445–448

    Article  CAS  Google Scholar 

  20. Maennig B, Pfeiffer M, Nollau A, Zhou X, Leo K, Simon P (2001) Controlled p-doping of polycrystalline and amorphous organic layers: self-consistent description of conductivity and field-effect mobility by a microscopic percolation model. Phys Rev B 64:195208

    Article  Google Scholar 

  21. de Leeuw DM (1993) Stable solutions of doped thiophene oligomers. Synth Met 57:3597–3602

    Article  Google Scholar 

  22. Maitrot M, Boudjema B, Andre JJ, Simon J (1986) Molecular material-based junctions: formation of a Schottky contact with metallophthalocyanine thin films doped by the cosublimation method. J Appl Phys 60:2396–2400

    Article  CAS  Google Scholar 

  23. Jarrett CP, Friend RH, Brown AR, de Leeuw DM (1995) Field effect measurements in doped conjugated polymer films: assessment of charge carrier mobilities. J Appl Phys 77:6289–6294

    Article  CAS  Google Scholar 

  24. Gregg BA, Chen SG, Branz HM (2004) On the superlinear increase in conductivity with dopant concentration in excitonic semiconductors. Appl Phys Lett 84:1707–1709

    Article  CAS  Google Scholar 

  25. Shen Y, Diest K, Wong MH, Hsieh BR, Dunlap DH, Malliaras GG (2005) Charge transport in doped organic semiconductors. Phys Rev B 68:0812041–0812044

    Google Scholar 

  26. Borsenberger PM, Gruenbaum WT, Wolf U, Bässler H (1998) Hole trapping in tri-p-tolylamine-doped poly(styrene). Chem Phys 234:277–284

    Article  CAS  Google Scholar 

  27. Pai DM, Yanus JF, Stolka M (1984) Trap-controlled hopping transport. J Phys Chem 88:4714–4717

    Article  CAS  Google Scholar 

  28. Wolf U, Bässler H, Borsenberger PM, Gruenbaum WT (1997) Hole trapping in molecularly doped polymers. Chem Phys 222:259–267

    Article  CAS  Google Scholar 

  29. Fishchuk II, Bässler H (2002) Nondispersive charge-carrier transport in disordered organic materials containing traps. Phys Rev B 66:20520801–20520812

    Article  Google Scholar 

  30. Weissmantel C, Hamann C (1981) Grundlagen der Festköperphysik. Deutscher Verlag der Wissenschften, Germany

    Google Scholar 

  31. Arkipov VI, Emellianova EV, Tak YH, Bässler H (1998) Charge injection into light-emitting diodes: theory and experiment. J Appl Phys 84(2):848–856

    Article  Google Scholar 

  32. Wolf U, Arkipov VI, Bässler H (1999) Current injection from a metal to a disordered hopping system. I. Monte carlo simulation. Phys Rev B 59(11):7507–7513

    CAS  Google Scholar 

  33. Li L, Meller G, Kosina H (2007) Diffusion-controlled charge injection model for organic light-emitting diodes. Appl Phys Lett 91(17):1–3

    Google Scholar 

  34. Pope M, Swenberg CE (1979) Electronic processes in noncrystalline materials. Oxford University Press, UK

    Google Scholar 

  35. Sze SM (1981) Physics of semiconductor devices. Wiley, USA

    Google Scholar 

  36. Arkhipov VI, Heremans P, Emelianova EV, Adriaenssens GJ (2001) Space-charge-limited currents in materials with Gaussian energy distributions of localized states. Appl Phys Lett 79(25):4154–4156

    Article  CAS  Google Scholar 

  37. Pai DM (1970) Transient photoconductivity in poly(N-vinylcarbazole). J Phys Chem 52(5):2285–2291

    Article  CAS  Google Scholar 

  38. Li L (2008) Charge transport in organic semiconductor materials and devices. Reviewer: Kosina H, Süss D, Institut für Mikroelektronik. Oral examination, 02–08–2008

    Google Scholar 

  39. Brütting W, Berlerb S, Muckl AG (2001) Device physics of organic light-emitting diodes based on molecular materials. Org Electron 2:1–36

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, L., Kosina, H. (2009). Charge Transport in Organic Semiconductor Devices. In: Grasser, T., Meller, G., Li, L. (eds) Organic Electronics. Advances in Polymer Science, vol 223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2009_14

Download citation

Publish with us

Policies and ethics