Skip to main content

Device Modelling of Organic Bulk Heterojunction Solar Cells

  • Chapter
  • First Online:
Multiscale Modelling of Organic and Hybrid Photovoltaics

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 352))

Abstract

We review the methods used to simulate the optoelectronic response of organic solar cells and focus on the application of one-dimensional drift-diffusion simulations. We discuss how the important physical processes are treated and review some of the experiments necessary to determine the input parameters for device simulations. To illustrate the usefulness of drift-diffusion simulations, we discuss several case studies, addressing the influence of charged defects on transport in bipolar and unipolar devices, the influence of defects on recombination, device performance and ideality factors. To illustrate frequency domain simulations, we show how to determine the validity range of Mott–Schottky plots for thin devices. Finally, we discuss an example where optical simulations are used to calculate the parasitic absorption in contact layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The description of the dark current density with (8) is typically sufficient for most solar cell technologies. In some cases, especially for crystalline Si solar cells, a second diode has to be taken into account because different recombination mechanisms with different ideality factors dominate at different voltages (recombination in the space charge region at low voltages and recombination in the neutral zone at higher voltages).

  2. 2.

    However, note that J ph is not equal to J dJ l, which would not be a constant as a function of voltage even for infinite mobilities as long as there is a finite series resistance in the device. This is due to the fact that the voltage drop over the series resistance is J l R s under illumination and J d R s in the dark (i.e. not the same), meaning J dJ l is affected by the series resistance at larger forward bias [56, 57].

  3. 3.

    Within the framework of this model, the concentrations of majority carriers at the contacts are essentially fixed by the workfunctions of the contact materials. The minority carrier concentrations may or may not be fixed depending on how high the surface recombination velocity is chosen. This model will lead to a built-in field that is distributed rather homogeneously over the thin (100 nm or less) absorber layers that are typical for most organic solar cells and will lead to a substantial relevance of the electric field to charge carrier collection. An alternative suggestion comes from the group of Juan Bisquert which promotes a model based on an interfacial dipole at the cathode. This interfacial dipole is not fixed but changes as a function of voltage and accommodates part of the voltage drop under forward bias and reduces the electric field in the absorber layer relative to the case without a dipole. This would mean that charge collection would depend less on the electric field and transport would be mostly controlled by diffusion which will also play a role in the classical model when the device is thick enough and doped as we will discuss later. While the influence of interfacial dipoles on the device physics is a highly interesting topic, currently we are not aware of any publications reporting on (numerical) device simulations studying this effect. Therefore, we want to refer the reader to current literature on experimental evidence and analytical modeling that deals with interface dipoles such as for instance those in [48, 140].

  4. 4.

    The frequency domain simulations done for Fig. 7 have been performed using the drift-diffusion simulator SCAPS, which is available from Prof. Marc Burgelman at the University of Ghent in Belgium [228, 229].

References

  1. Li G, Zhu R, Yang Y (2012) Nat Photonics 6:153

    CAS  Google Scholar 

  2. Nelson J (2011) Mater Today 14:462

    CAS  Google Scholar 

  3. Graetzel M, Janssen RAJ, Mitzi DB, Sargent EH (2012) Nature 488:304

    CAS  Google Scholar 

  4. Sargent EH (2009) Nat Photonics 3:325

    CAS  Google Scholar 

  5. Ip AH, Thon SM, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny LR, Carey GH, Fischer A, Kemp KW, Kramer IJ, Ning ZJ, Labelle AJ, Chou KW, Amassian A, Sargent EH (2012) Nat Nanotechnol 7:577

    CAS  Google Scholar 

  6. Semonin OE, Luther JM, Choi S, Chen HY, Gao JB, Nozik AJ, Beard MC (2011) Science 334:1530

    CAS  Google Scholar 

  7. Rath AK, Bernechea M, Martinez L, de Arquer FPG, Osmond J, Konstantatos G (2012) Nat Photonics 6:529

    CAS  Google Scholar 

  8. Li G, Shrotriya V, Huang JS, Yao Y, Moriarty T, Emery K, Yang Y (2005) Nat Mater 4:864

    CAS  Google Scholar 

  9. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DDC, Giles M, McCulloch I, Ha CS, Ree M (2006) Nat Mater 5:197

    CAS  Google Scholar 

  10. Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC (2007) Nat Mater 6:497

    CAS  Google Scholar 

  11. Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Nat Photonics 3:297

    CAS  Google Scholar 

  12. Chen HY, Hou JH, Zhang SQ, Liang YY, Yang GW, Yang Y, Yu LP, Wu Y, Li G (2009) Nat Photonics 3:649

    CAS  Google Scholar 

  13. He ZC, Zhong CM, Huang X, Wong WY, Wu HB, Chen LW, Su SJ, Cao Y (2011) Adv Mater 23:4636

    CAS  Google Scholar 

  14. Small CE, Chen S, Subbiah J, Amb CM, Tsang SW, Lai TH, Reynolds JR, So F (2012) Nat Photonics 6:115

    CAS  Google Scholar 

  15. Dou LT, You JB, Yang J, Chen CC, He YJ, Murase S, Moriarty T, Emery K, Li G, Yang Y (2012) Nat Photonics 6:180

    CAS  Google Scholar 

  16. He ZC, Zhong CM, Su SJ, Xu M, Wu HB, Cao Y (2012) Nat Photonics 6:591

    Google Scholar 

  17. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2012) Prog Photovoltaics 20:606

    Google Scholar 

  18. Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Nature 376:498

    CAS  Google Scholar 

  19. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Science 270:1789

    CAS  Google Scholar 

  20. Brabec CJ, Gowrisanker S, Halls JJM, Laird D, Jia SJ, Williams SP (2010) Adv Mater 22:3839

    CAS  Google Scholar 

  21. Scharber MC, Wuhlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CL (2006) Adv Mater 18:789

    CAS  Google Scholar 

  22. Vandewal K, Gadisa A, Oosterbaan WD, Bertho S, Banishoeib F, Van Severen I, Lutsen L, Cleij TJ, Vanderzande D, Manca JV (2008) Adv Funct Mater 18:2064

    CAS  Google Scholar 

  23. Vandewal K, Ma Z, Bergqvist J, Tang Z, Wang E, Henriksson P, Tvingstedt K, Andersson MR, Zhang F, Inganas O (2012) Adv Energy Mater 22:3480

    CAS  Google Scholar 

  24. Faist MA, Kirchartz T, Gong W, Ashraf RS, McCulloch I, de Mello JC, Ekins-Daukes NJ, Bradley DDC, Nelson J (2012) J Am Chem Soc 134:685

    CAS  Google Scholar 

  25. Brabec CJ, Heeney M, McCulloch I, Nelson J (2011) Chem Soc Rev 40:1185

    CAS  Google Scholar 

  26. Deibel C, Strobel T, Dyakonov V (2009) Phys Rev Lett 103

    Google Scholar 

  27. McMahon DP, Cheung DL, Troisi A (2011) J Phys Chem Lett 2:2737

    CAS  Google Scholar 

  28. Grancini G, Maiuri M, Fazzi D, Petrozza A, Egelhaaf HJ, Brida D, Cerullo G, Lanzani G (2013) Nat Mater 12:29

    CAS  Google Scholar 

  29. Price SC, Stuart AC, Yang LQ, Zhou HX, You W (2011) J Am Chem Soc 133:4625

    CAS  Google Scholar 

  30. Peet J, Wen L, Byrne P, Rodman S, Forberich K, Shao Y, Drolet N, Gaudiana R, Dennler G, Waller D (2011) Appl Phys Lett 98:043301

    Google Scholar 

  31. Credgington D, Hamilton R, Atienzar P, Nelson J, Durrant JR (2011) Adv Funct Mater 21:2744

    CAS  Google Scholar 

  32. Roichman Y, Tessler N (2002) Appl Phys Lett 80:1948

    CAS  Google Scholar 

  33. Roichman Y, Preezant Y, Tessler N (2004) Physica Status Solidi A Appl Res 201:1246

    CAS  Google Scholar 

  34. Arora ND, Chamberlain SG, Roulston DJ (1980) Appl Phys Lett 37:325

    CAS  Google Scholar 

  35. Wurfel P, Trupke T, Puzzer T, Schaffer E, Warta W, Glunz SW (2007) J Appl Phys 101:123110

    Google Scholar 

  36. Kirchartz T, Helbig A, Rau U (2008) Sol Energ Mat Sol C 92:1621

    CAS  Google Scholar 

  37. Shuttle CG, Hamilton R, Nelson J, O'Regan BC, Durrant JR (2010) Adv Funct Mater 20:698

    CAS  Google Scholar 

  38. Montero JM, Bisquert J (2011) Solid State Electron 55:1

    CAS  Google Scholar 

  39. Deibel C, Wagenpfahl A, Dyakonov V (2009) Phys Rev B 80

    Google Scholar 

  40. Kirchartz T, Nelson J (2012) Phys Rev B 86:165201

    Google Scholar 

  41. Cowan SR, Roy A, Heeger AJ (2010) Phys Rev B 82:245207

    Google Scholar 

  42. Dibb GFA, Kirchartz T, Credgington D, Durrant JR, Nelson J (2011) J Phys Chem Lett 2:2407

    CAS  Google Scholar 

  43. Sievers DW, Shrotriya V, Yang Y (2006) J Appl Phys 100:114509

    Google Scholar 

  44. Pettersson LAA, Roman LS, Inganas O (1999) J Appl Phys 86:487

    CAS  Google Scholar 

  45. Peumans P, Yakimov A, Forrest SR (2003) J Appl Phys 93:3693

    CAS  Google Scholar 

  46. Ojala A, Petersen A, Fuchs A, Lovrincic R, Polking C, Trollmann J, Hwang J, Lennartz C, Reichelt H, Hoffken HW, Pucci A, Erk P, Kirchartz T, Wurthner F (2012) Adv Funct Mater 22:86

    CAS  Google Scholar 

  47. Petersen A, Ojala A, Kirchartz T, Wagner TA, Wurthner F, Rau U (2012) Phys Rev B 85:245208

    Google Scholar 

  48. Bisquert J, Garcia-Belmonte G (2011) J Phys Chem Lett 2:1950

    CAS  Google Scholar 

  49. Kirchartz T, Gong W, Hawks SA, Agostinelli T, MacKenzie RCI, Yang Y, Nelson J (2012) J Phys Chem C 116:7672

    CAS  Google Scholar 

  50. Mingebach M, Deibel C, Dyakonov V (2011) Phys Rev B 84:153201

    Google Scholar 

  51. Street RA, Song KW, Northrup JE, Cowan S (2011) Phys Rev B 83:165207

    Google Scholar 

  52. Street RA (2011) Phys Rev B 84:075208

    Google Scholar 

  53. Street RA, Krakaris A, Cowan SR (2012) Adv Funct Mater 22:4608

    CAS  Google Scholar 

  54. Kirchartz T, Pieters BE, Kirkpatrick J, Rau U, Nelson J (2011) Phys Rev B 83:115209

    Google Scholar 

  55. Brendel R, Rau U (1999) J Appl Phys 85:3634

    CAS  Google Scholar 

  56. Kirchartz T, Ding K, Rau U (2011) Fundamental electrical characterization of thin-film solar cells. In: Abou-Ras D, Kirchartz T, Rau U (eds) Advanced characterization techniques for thin film solar cells. Wiley-VCH, Weinheim, Chap 2, p 33

    Google Scholar 

  57. Street RA, Song KW, Cowan S (2011) Org Electron 12:244

    CAS  Google Scholar 

  58. Kirchartz T, Agostinelli T, Campoy-Quiles M, Gong W, Nelson J (2012) J Phys Chem Lett 3:3470

    CAS  Google Scholar 

  59. Hecht Z (1932) Z Phys A 77:235

    CAS  Google Scholar 

  60. Crandall RS (1982) J Appl Phys 53:3350

    CAS  Google Scholar 

  61. Street RA, Schoendorf M, Roy A, Lee JH (2010) Phys Rev B 81:205307

    Google Scholar 

  62. Tumbleston JR, Liu YC, Samulski ET, Lopez R (2012) Adv Energy Mater 2:477

    CAS  Google Scholar 

  63. Waldauf C, Scharber MC, Schilinsky P, Hauch JA, Brabec CJ (2006) J Appl Phys 99:104503

    Google Scholar 

  64. Crandall RS (1983) J Appl Phys 54:7176

    CAS  Google Scholar 

  65. Crandall RS (1984) J Appl Phys 55:4418

    CAS  Google Scholar 

  66. Taretto K, Rau U, Werner JH (2003) Appl Phys A-Mater 77:865

    CAS  Google Scholar 

  67. Taretto K (2012) Prog Photovoltaics; doi: 10.1002/pip.2325

  68. Savoie BM, Movaghar B, Marks TJ, Ratner MA (2013) J Phys Chem Lett 4:704

    CAS  Google Scholar 

  69. Koster LJA, Smits ECP, Mihailetchi VD, Blom PWM (2005) Phys Rev B 72:085205

    Google Scholar 

  70. Onsager L (1934) J Chem Phys 2:599

    CAS  Google Scholar 

  71. Braun CL (1984) J Chem Phys 80:4157

    CAS  Google Scholar 

  72. Gommans HHP, Kemerink M, Kramer JM, Janssen RAJ (2005) Appl Phys Lett 87:122104

    Google Scholar 

  73. Deibel C, Wagenpfahl A, Dyakonov V (2008) Phys Status Solidi-R 2:175

    CAS  Google Scholar 

  74. Limpinsel M, Wagenpfahl A, Mingebach M, Deibel C, Dyakonov V (2010) Phys Rev B 81:085203

    Google Scholar 

  75. Kirchartz T, Pieters BE, Taretto K, Rau U (2008) J Appl Phys 104:094513

    Google Scholar 

  76. Hausermann R, Knapp E, Moos M, Reinke NA, Flatz T, Ruhstaller B (2009) J Appl Phys 106:104507

    Google Scholar 

  77. Soldera M, Taretto K, Kirchartz T (2012) Phys Status Solidi A 209:207

    CAS  Google Scholar 

  78. Mihailetchi VD, Wildeman J, Blom PWM (2005) Phys Rev Lett 94:126602

    CAS  Google Scholar 

  79. Mihailetchi VD, Koster LJA, Hummelen JC, Blom PWM (2004) Phys Rev Lett 93:216601

    CAS  Google Scholar 

  80. Street RA, Cowan S, Heeger AJ (2010) Phys Rev B 82:121301

    Google Scholar 

  81. Shuttle CG, Hamilton R, O'Regan BC, Nelson J, Durrant JR (2010) Proc Natl Acad Sci U S A 107:16448

    CAS  Google Scholar 

  82. Jamieson FC, Agostinelli T, Azimi H, Nelson J, Durrant JR (2010) J Phys Chem Lett 1:3306

    CAS  Google Scholar 

  83. Mandoc MM, Kooistra FB, Hummelen JC, de Boer B, Blom PWM (2007) Appl Phys Lett 91

    Google Scholar 

  84. Hwang I, McNeill CR, Greenham NC (2009) J Appl Phys 106:094506

    Google Scholar 

  85. MacKenzie RCI, Kirchartz T, Dibb GFA, Nelson J (2011) J Phys Chem C 115:9806

    CAS  Google Scholar 

  86. MacKenzie RCI, Shuttle CG, Chabinyc ML, Nelson J (2012) Adv Energy Mater 2:662

    CAS  Google Scholar 

  87. Blakesley JC, Neher D (2011) Phys Rev B 84:075210

    Google Scholar 

  88. Schafer S, Petersen A, Wagner TA, Kniprath R, Lingenfelser D, Zen A, Kirchartz T, Zimmermann B, Wurfel U, Feng XJ, Mayer T (2011) Phys Rev B 83:165311

    Google Scholar 

  89. Tachiya M, Seki K (2010) Phys Rev B 82:085201

    Google Scholar 

  90. Ray B, Nair PR, Alam MA (2011) Sol Energ Mat Sol C 95:3287

    CAS  Google Scholar 

  91. Ray B, Alam MA (2011) Appl Phys Lett 99:033303

    Google Scholar 

  92. Ray B, Alam MA (2012) Sol Energ Mat Sol C 99:204

    CAS  Google Scholar 

  93. Stelzl FF, Wurfel U (2012) Phys Rev B 86:075315

    Google Scholar 

  94. Maturova K, van Bavel SS, Wienk MM, Janssen RAJ, Kemerink M (2009) Nano Lett 9:3032

    CAS  Google Scholar 

  95. Maturova K, Kemerink M, Wienk MM, Charrier DSH, Janssen RAJ (2009) Adv Funct Mater 19:1379

    CAS  Google Scholar 

  96. Maturova K, Janssen RAJ, Kemerink M (2010) ACS Nano 4:1385

    CAS  Google Scholar 

  97. Maturova K, van Bavel SS, Wienk MM, Janssen RAJ, Kemerink M (2011) Adv Funct Mater 21:261

    CAS  Google Scholar 

  98. Yu ZG, Smith DL, Saxena A, Martin RL, Bishop AR (2001) Phys Rev B 63:085202

    Google Scholar 

  99. Barth S, Wolf U, Bassler H, Muller P, Riel H, Vestweber H, Seidler PF, Riess W (1999) Phys Rev B 60:8791

    CAS  Google Scholar 

  100. Bassler H (1993) Physica Status Solidi B-Basic Res 175:15

    Google Scholar 

  101. Nelson J (2003) Phys Rev B 67:155209

    Google Scholar 

  102. Offermans T, Meskers SCJ, Janssen RAJ (2005) Chem Phys 308:125

    CAS  Google Scholar 

  103. van Eersel H, Janssen RAJ, Kemerink M (2012) Adv Funct Mater 22:2700

    Google Scholar 

  104. Peumans P, Uchida S, Forrest SR (2003) Nature 425:158

    CAS  Google Scholar 

  105. Watkins PK, Walker AB, Verschoor GLB (2005) Nano Lett 5:1814

    CAS  Google Scholar 

  106. Frost JM, Cheynis F, Tuladhar SM, Nelson J (2006) Nano Lett 6:1674

    CAS  Google Scholar 

  107. Greenham NC, Bobbert PA (2003) Phys Rev B 68:245301

    Google Scholar 

  108. Groves C, Blakesley JC, Greenham NC (2010) Nano Lett 10:1063

    CAS  Google Scholar 

  109. Groves C, Greenham NC (2013) Monte Carlo simulations of organic photovoltaics. Top Curr Chem. doi:10.1007/128_2013_467

    Google Scholar 

  110. Christ NS, Kettlitz SW, Valouch S, Zufle S, Gartner C, Punke M, Lemmer U (2009) J Appl Phys 105:104513

    Google Scholar 

  111. Brenner TJK, Hwang I, Greenham NC, McNeill CR (2010) J Appl Phys 107:114501

    Google Scholar 

  112. Slooff LH, Veenstra SC, Kroon JM, Moet DJD, Sweelssen J, Koetse MM (2007) Appl Phys Lett 90:143506

    Google Scholar 

  113. Burkhard GF, Hoke ET, McGehee MD (2010) Adv Mater 22:3293

    CAS  Google Scholar 

  114. Burkhard GF, Hoke ET, Scully SR, McGehee MD (2009) Nano Lett 9:4037

    CAS  Google Scholar 

  115. Lee J, Vandewal K, Yost SR, Bahlke ME, Goris L, Baldo MA, Manca JV, Van Voorhis T (2010) J Am Chem Soc 132:11878

    CAS  Google Scholar 

  116. Battaglia C, Escarre J, Soderstrom K, Charriere M, Despeisse M, Haug FJ, Ballif C (2011) Nat Photonics 5:535

    CAS  Google Scholar 

  117. Battaglia C, Hsu CM, Soderstrom K, Escarre J, Haug FJ, Charriere M, Boccard M, Despeisse M, Alexander DTL, Cantoni M, Cui Y, Ballif C (2012) ACS Nano 6:2790

    CAS  Google Scholar 

  118. Deckman HW, Wronski C, Witzke H, Yablonovitch E (1982) J Opt Soc Am 72:1745

    Google Scholar 

  119. Upping J, Bielawny A, Wehrspohn RB, Beckers T, Carius R, Rau U, Fahr S, Rockstuhl C, Lederer F, Kroll M, Pertsch T, Steidl L, Zentel R (2011) Adv Mater 23:3896

    Google Scholar 

  120. Rockstuhl C, Fahr S, Lederer F, Bittkau K, Beckers T, Carius R (2008) Appl Phys Lett 93:061105

    Google Scholar 

  121. Fahr S, Rockstuhl C, Lederer F (2008) Appl Phys Lett 92:171114

    Google Scholar 

  122. Rockstuhl C, Fahr S, Bittkau K, Beckers T, Carius R, Haug FJ, Soderstrom T, Ballif C, Lederer F (2010) Opt Express 18:A335

    CAS  Google Scholar 

  123. Fahr S, Kirchartz T, Rockstuhl C, Lederer F (2011) Opt Express 19:A865

    CAS  Google Scholar 

  124. Garcia-Belmonte G, Bisquert J (2010) Appl Phys Lett 96:113301

    Google Scholar 

  125. Stallinga P (2011) Adv Mater 23:3356

    CAS  Google Scholar 

  126. Nicolai HT, Kuik M, Wetzelaer GAH, de Boer B, Campbell C, Risko C, Bredas JL, Blom PWM (2012) Nat Mater 11:882

    CAS  Google Scholar 

  127. Street RA, Northrup JE, Krusor BS (2012) Phys Rev B 85:205211

    Google Scholar 

  128. Sah C-T, Shockley W (1958) Phys Rev 109:1103

    CAS  Google Scholar 

  129. Pieters BE (2008) Characterization of thin-film silicon materials and solar cells through numerical modelling. PhD Thesis, Delft University of Technology, Delft

    Google Scholar 

  130. Riede M, Mueller T, Tress W, Schueppel R, Leo K (2008) Nanotechnology 19

    Google Scholar 

  131. Glatthaar M, Mingirulli N, Zimmermann B, Ziegler T, Kern R, Niggemann M, Hinsch A, Gombert A (2005) Phys Status Solidi A 202:R125

    CAS  Google Scholar 

  132. Morfa AJ, Nardes AM, Shaheen SE, Kopidakis N, van de Lagemaat J (2011) Adv Funct Mater 21:2580

    CAS  Google Scholar 

  133. Bisquert J, Garcia-Belmonte G, Munar A, Sessolo M, Soriano A, Bolink HJ (2008) Chem Phys Lett 465:57

    CAS  Google Scholar 

  134. Abdou MSA, Orfino FP, Son Y, Holdcroft S (1997) J Am Chem Soc 119:4518

    CAS  Google Scholar 

  135. Boix PP, Garcia-Belmonte G, Munecas U, Neophytou M, Waldauf C, Pacios R (2009) Appl Phys Lett 95:233302

    Google Scholar 

  136. Khelifi S, Decock K, Lauwaert J, Vrielinck H, Spoltore D, Piersimoni F, Manca J, Belghachi A, Burgelman M (2011) J Appl Phys 110:094509

    Google Scholar 

  137. Dibb GFA, Muth M, Kirchartz T, Engmann S, Hoppe H, Gobsch G, Thelakatt M, Orozco MC, Durrant JR, Nelson J (2013) Influence of space charge and doping on charge carrier collection in normal and inverted geometry polymer:fullerene solar cells (Unpublished)

    Google Scholar 

  138. Kirchartz T (2013) Beilstein J Nanotechnol 4:180

    CAS  Google Scholar 

  139. Liang ZQ, Gregg BA (2012) Adv Mater 24:3258

    CAS  Google Scholar 

  140. Guerrero A, Marchesi LF, Boix PP, Ruiz-Raga S, Ripolles-Sanchis T, Garcia-Belmonte G, Bisquert J (2012) ACS Nano 6:3453

    CAS  Google Scholar 

  141. Scharfetter DL, Gummel HK (1969) IEEE Trans Electron Devices 16:64

    Google Scholar 

  142. Gummel HK (1964) IEEE Trans Electron Devices 11:455

    Google Scholar 

  143. Selberherr S (1984) Analysis and simulation of semiconductor devices. Springer-Verlag, Wien

    Google Scholar 

  144. Marsillac S, Sestak MN, Li J, Collins RW (2011) Spectroscopic ellipsometry. In: Abou-Ras D, Kirchartz T, Rau U (eds) Advanced characterization techniques for thin film solar cells. Wiley-VCH, Weinheim, Chap 6, p 125

    Google Scholar 

  145. Goris L, Poruba A, Hod'akova L, Vanecek M, Haenen K, Nesladek M, Wagner P, Vanderzande D, De Schepper L, Manca JV (2006) Appl Phys Lett 88:052113

    Google Scholar 

  146. Goris L, Haenen K, Nesladek M, Wagner P, Vanderzande D, De Schepper L, D'Haen J, Lutsen L, Manca JV (2005) J Mater Sci 40:1413

    CAS  Google Scholar 

  147. Holcombe TW, Norton JE, Rivnay J, Woo CH, Goris L, Piliego C, Griffini G, Sellinger A, Bredas JL, Salleo A, Frechet JMJ (2011) J Am Chem Soc 133:12106

    CAS  Google Scholar 

  148. Shuttle CG, O'Regan B, Ballantyne AM, Nelson J, Bradley DDC, de Mello J, Durrant JR (2008) Appl Phys Lett 92:093311

    Google Scholar 

  149. Shuttle CG, O'Regan B, Ballantyne AM, Nelson J, Bradley DDC, Durrant JR (2008) Phys Rev B 78:113201

    Google Scholar 

  150. Shuttle CG, Maurano A, Hamilton R, O'Regan B, de Mello JC, Durrant JR (2008) Appl Phys Lett 93:183501

    Google Scholar 

  151. Credgington D, Jamieson FC, Walker B, Nguyen TQ, Durrant JR (2012) Adv Mater 24:2135

    CAS  Google Scholar 

  152. Credgington D, Durrant JR (2012) J Phys Chem Lett 3:1465

    CAS  Google Scholar 

  153. Etzold F, Howard IA, Mauer R, Meister M, Kim TD, Lee KS, Baek NS, Laquai F (2011) J Am Chem Soc 133:9469

    CAS  Google Scholar 

  154. Boix PP, Guerrero A, Marchesi LF, Garcia-Belmonte G, Bisquert J (2011) Adv Energy Mater 1:1073

    CAS  Google Scholar 

  155. Guerrero A, Marchesi LF, Boix PP, Bisquert J, Garcia-Belmonte G (2012) J Phys Chem Lett 3:1386

    CAS  Google Scholar 

  156. Boix PP, Ajuria J, Pacios R, Garcia-Belmonte G (2011) J Appl Phys 109

    Google Scholar 

  157. Gong W, Faist MA, Ekins-Daukes NJ, Xu Z, Bradley DDC, Nelson J, Kirchartz T (2012) Phys Rev B 86:024201

    Google Scholar 

  158. Christ N, Kettlitz SW, Zuefle S, Valouch S, Lemmer U (2011) Phys Rev B 83:195211

    Google Scholar 

  159. Shuttle CG, Treat ND, Douglas JD, Frechet JMJ, Chabinyc ML (2012) Adv Energy Mater 2:111

    CAS  Google Scholar 

  160. MacKenzie RCI, Shuttle CG, Dibb GFA, Treat ND, von Hauff E, Robb M, Hawker CJ, Chabinyc ML, Nelson J (2013) J Phys Chem C 117:12407

    Google Scholar 

  161. Foertig A, Rauh J, Dyakonov V, Deibel C (2012) Phys Rev B 86:115302

    Google Scholar 

  162. Schafferhans J, Deibel C, Dyakonov V (2011) Adv Energy Mater 1:655

    CAS  Google Scholar 

  163. Schafferhans J, Baumann A, Wagenpfahl A, Deibel C, Dyakonov V (2010) Org Electron 11:1693

    CAS  Google Scholar 

  164. Schafferhans J, Baumann A, Deibel C, Dyakonov V (2008) Appl Phys Lett 93

    Google Scholar 

  165. Carati C, Bonoldi L, Po R (2011) Phys Rev B 84:245205

    Google Scholar 

  166. Schmechel R, von Seggern H (2004) Physica Status Solidi A-Appl Res 201:1215

    CAS  Google Scholar 

  167. Beiley ZM, Hoke ET, Noriega R, Dacuna J, Burkhard GF, Bartelt JA, Salleo A, Toney MF, McGehee MD (2011) Adv Energy Mater 1:954

    CAS  Google Scholar 

  168. Blakesley JC, Clubb HS, Greenham NC (2010) Phys Rev B 81:045210

    Google Scholar 

  169. Eng MP, Barnes PRF, Durrant JR (2010) J Phys Chem Lett 1:3096

    CAS  Google Scholar 

  170. Garcia-Belmonte G, Boix PP, Bisquert J, Lenes M, Bolink HJ, La Rosa A, Filippone S, Martin N (2010) J Phys Chem Lett 1:2566

    CAS  Google Scholar 

  171. Rivnay J, Noriega R, Northrup JE, Kline RJ, Toney MF, Salleo A (2011) Phys Rev B 83:121306

    Google Scholar 

  172. Nicolai HT, Wetzelaer GAH, Kuik M, Kronemeijer AJ, de Boer B, Blom PWM (2010) Appl Phys Lett 96:172107

    Google Scholar 

  173. Lenes M, Shelton SW, Sieval AB, Kronholm DF, Hummelen JC, Blom PWM (2009) Adv Funct Mater 19:3002

    CAS  Google Scholar 

  174. Lenes M, Morana M, Brabec CJ, Blom PWM (2009) Adv Funct Mater 19:1106

    CAS  Google Scholar 

  175. Mihailetchi VD, Koster LJA, Blom PWM, Melzer C, de Boer B, van Duren JKJ, Janssen RAJ (2005) Adv Funct Mater 15:795

    CAS  Google Scholar 

  176. Mihailetchi VD, van Duren JKJ, Blom PWM, Hummelen JC, Janssen RAJ, Kroon JM, Rispens MT, Verhees WJH, Wienk MM (2003) Adv Funct Mater 13:43

    CAS  Google Scholar 

  177. Nicolai HT, Mandoc MM, Blom PWM (2011) Phys Rev B 83:195204

    Google Scholar 

  178. Lu MT, Nicolai HT, Wetzelaer GJAH, Blom PWM (2011) J Polym Sci Pol Phys 49:1745

    CAS  Google Scholar 

  179. Azimi H, Senes A, Scharber MC, Hingerl K, Brabec CJ (2011) Adv Energy Mater 1:1162

    CAS  Google Scholar 

  180. Dacuna J, Salleo A (2011) Phys Rev B 84:195209

    Google Scholar 

  181. Dacuna J, Xie W, Salleo A (2012) Phys Rev B 86:115202

    Google Scholar 

  182. Kuik M, Wetzelaer GJAH, Ladde JG, Nicolai HT, Wildeman J, Sweelssen J, Blom PWM (2011) Adv Funct Mater 21:4502

    CAS  Google Scholar 

  183. Martens HCF, Huiberts JN, Blom PWM (2000) Appl Phys Lett 77:1852

    CAS  Google Scholar 

  184. Martens HCF, Brom HB, Blom PWM, Schoo HFM (2000) Physica Status Solidi B-Basic Res 218:283

    CAS  Google Scholar 

  185. Poplavskyy D, So F (2006) J Appl Phys 99:033707

    Google Scholar 

  186. Knapp E, Ruhstaller B (2012) J Appl Phys 112:024519

    Google Scholar 

  187. Scher H, Montroll EW (1975) Phys Rev B 12:2455

    CAS  Google Scholar 

  188. Pivrikas A, Juska G, Mozer AJ, Scharber M, Arlauskas K, Sariciftci NS, Stubb H, Osterbacka R (2005) Phys Rev Lett 94:176806

    CAS  Google Scholar 

  189. Choulis SA, Nelson J, Kim Y, Poplavskyy D, Kreouzis T, Durrant JR, Bradley DDC (2003) Appl Phys Lett 83:3812

    CAS  Google Scholar 

  190. Tuladhar SM, Poplavskyy D, Choulis SA, Durrant JR, Bradley DDC, Nelson J (2005) Adv Funct Mater 15:1171

    CAS  Google Scholar 

  191. Tuladhar SM, Sims M, Choulis SA, Nielsen CB, George WN, Steinke JHG, Bradley DDC, Nelson J (2009) Org Electron 10:562

    CAS  Google Scholar 

  192. Pivrikas A, Sariciftci NS, Juska G, Osterbacka R (2007) Prog Photovoltaics 15:677

    CAS  Google Scholar 

  193. Seynhaeve GF, Barclay RP, Adriaenssens GJ, Marshall JM (1989) Phys Rev B 39:10196

    CAS  Google Scholar 

  194. Baumann A, Lorrmann J, Rauh D, Deibel C, Dyakonov V (2012) Adv Mater 24:4381

    CAS  Google Scholar 

  195. Lorrmann J, Badada BH, Inganas O, Dyakonov V, Deibel C (2010) J Appl Phys 108

    Google Scholar 

  196. Albrecht S, Schindler W, Kurpiers J, Kniepert J, Blakesley JC, Dumsch I, Allard S, Fostiropoulos K, Scherf U, Neher D (2012) J Phys Chem Lett 3:640

    CAS  Google Scholar 

  197. Neukom MT, Reinke NA, Ruhstaller B (2011) Sol Energ 85:1250

    CAS  Google Scholar 

  198. Neukom MT, Zufle S, Ruhstaller B (2012) Org Electron 13:2910

    CAS  Google Scholar 

  199. Rauh D, Deibel C, Dyakonov V (2012) Adv Funct Mater 22:3371

    CAS  Google Scholar 

  200. Bisquert J (2003) Phys Chem Chem Phys 5:5360

    CAS  Google Scholar 

  201. Mora-Sero I, Bisquert J, Fabregat-Santiago F, Garcia-Belmonte G, Zoppi G, Durose K, Proskuryakov Y, Oja I, Belaidi A, Dittrich T, Tena-Zaera R, Katty A, Levy-Clement C, Barrioz V, Irvine SJC (2006) Nano Lett 6:640

    CAS  Google Scholar 

  202. Garcia-Belmonte G, Munar A, Barea EM, Bisquert J, Ugarte I, Pacios R (2008) Org Electron 9:847

    CAS  Google Scholar 

  203. Garcia-Belmonte G, Boix PP, Bisquert J, Sessolo M, Bolink HJ (2010) Sol Energ Mat Sol C 94:366

    CAS  Google Scholar 

  204. Fabregat-Santiago F, Garcia-Belmonte G, Mora-Sero I, Bisquert J (2011) Phys Chem Chem Phys 13:9083

    CAS  Google Scholar 

  205. Heath J, Zabierowski P (2011) Capacitance spectroscopy of thin-film solar cells. In: Abou-Ras D, Kirchartz T, Rau U (eds) Advanced characterization techniques for thin film solar cells. Weinheim, Wiley-Vch, Chap 4, p 81

    Google Scholar 

  206. Nelson J, Kirkpatrick J, Ravirajan P (2004) Phys Rev B 69

    Google Scholar 

  207. Kirchartz T, Mattheis J, Rau U (2008) Phys Rev B 78:235320

    Google Scholar 

  208. Koster LJA, Mihailetchi VD, Blom PWM (2006) Appl Phys Lett 88:093511

    Google Scholar 

  209. Kirchartz T, Taretto K, Rau U (2009) J Phys Chem C 113:17958

    CAS  Google Scholar 

  210. Koster LJA, Shaheen SE, Hummelen JC (2012) Adv Energy Mater 2:1246

    CAS  Google Scholar 

  211. Mandoc MM, Koster LJA, Blom PWM (2007) Appl Phys Lett 90

    Google Scholar 

  212. Wehenkel DJ, Koster LJA, Wienk MM, Janssen RAJ (2012) Phys Rev B 85:125203

    Google Scholar 

  213. Petersen A, Kirchartz T, Wagner TA (2012) Phys Rev B 85:045208

    Google Scholar 

  214. Kirchartz T, Pieters BE, Taretto K, Rau U (2009) Phys Rev B 80:035334

    Google Scholar 

  215. Koster LJA, Mihailetchi VD, Ramaker R, Blom PWM (2005) Appl Phys Lett 86:123509

    Google Scholar 

  216. Koster LJA, Mihailetchi VD, Xie H, Blom PWM (2005) Appl Phys Lett 87:203502

    Google Scholar 

  217. Kuik M, Koster LJA, Wetzelaer GAH, Blom PWM (2011) Phys Rev Lett 107

    Google Scholar 

  218. Wagenpfahl A, Rauh D, Binder M, Deibel C, Dyakonov V (2010) Phys Rev B 82:115306

    Google Scholar 

  219. Deibel C, Wagenpfahl A (2010) Phys Rev B 82:207301

    Google Scholar 

  220. Kotlarski JD, Moet DJD, Blom PWM (2011) J Polym Sci Pol Phys 49:708

    CAS  Google Scholar 

  221. Kotlarski JD, Blom PWM (2012) Appl Phys Lett 100:013306

    Google Scholar 

  222. Murgatroyd PN (1970) J Phys D: Appl Phys 3:151

    Google Scholar 

  223. Mark P, Helfrich W (1962) J Appl Phys 33:205

    CAS  Google Scholar 

  224. Faist MA, Shoaee S, Tuladhar SM, Dibb GFA, Foster S, Gong W, Kirchartz T, Bradley DDC, Durrant JR, Nelson J (2013) Adv Energy Mat 3:744

    Google Scholar 

  225. Maurano A, Hamilton R, Shuttle CG, Ballantyne AM, Nelson J, O'Regan B, Zhang WM, McCulloch I, Azimi H, Morana M, Brabec CJ, Durrant JR (2010) Adv Mater 22:4987

    CAS  Google Scholar 

  226. Maurano A, Shuttle CC, Hamilton R, Ballantyne AM, Nelson J, Zhang WM, Heeney M, Durrant JR (2011) J Phys Chem C 115:5947

    CAS  Google Scholar 

  227. Cowan SR, Street RA, Cho SN, Heeger AJ (2011) Phys Rev B 83

    Google Scholar 

  228. Burgelman M, Nollet P, Degrave S (2000) Thin Solid Films 361:527

    Google Scholar 

  229. Burgelman M, Verschraegen J, Degrave S, Nollet P (2004) Prog Photovoltaics 12:143

    CAS  Google Scholar 

  230. Ding KN, Kirchartz T, Pieters BE, Ulbrich C, Ermes AM, Schicho S, Lambertz A, Carius R, Rau U (2011) Sol Energ Mat Sol C 95:3318

    CAS  Google Scholar 

  231. Berning PH (1963) Theory and calculations of optical thin films. In: Hass G (ed) Physics of thin films. Academic, New York, Chap 2, p 69

    Google Scholar 

  232. Hall RN (1952) Phys Rev 87:387

    CAS  Google Scholar 

  233. Shockley W, Read WT (1952) Phys Rev 87:835

    CAS  Google Scholar 

  234. Simmons JG, Taylor GW (1971) Phys Rev B 4:502

    Google Scholar 

  235. Pieters BE, Kirchartz T, Merdzhanova T, Carius R (2010) Sol Energ Mat Sol C 94:1851

    CAS  Google Scholar 

  236. Zeman M, Krc J (2008) J Mater Res 23:889

    CAS  Google Scholar 

  237. Kim JB, Kim P, Pegard NC, Oh SJ, Kagan CR, Fleischer JW, Stone HA, Loo YL (2012) Nat Photonics 6:327

    CAS  Google Scholar 

  238. Gevaerts VS, Furlan A, Wienk MM, Turbiez M, Janssen RAJ (2012) Adv Mater 24:2130

    CAS  Google Scholar 

  239. Kouijzer S, Esiner S, Frijters CH, Turbiez M, Wienk MM, Janssen RAJ (2012) Adv Energy Mater 2:945

    CAS  Google Scholar 

  240. Decock K, Khelifi S, Buecheler S, Pianezzi F, Tiwari AN, Burgelman M (2011) J Appl Phys 110:063722

    Google Scholar 

  241. Pieters BE, Decock K, Burgelman M, Stangl R, Kirchartz T (2011) One-dimensional electro-optical simulations of thin-film solar cells. In: Abou-Ras D, Kirchartz T, Rau U (eds) Advanced characterization techniques for thin film solar cells. Wiley-VCH Verlag GmbH & Co, KGaA, p 501

    Google Scholar 

Download references

Acknowledgements

T. K. acknowledges support by an Imperial College Junior Research Fellowship. J. N. acknowledges support from the Engineering and Physical Sciences Research Council (EP/J500021/1 and EP/G031088/1) and the Royal Society through an Industry Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny Nelson .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Transfer Matrix Formalism

There have been plenty of descriptions in the literature of the transfer matrix formalism for computing the position dependent generation rate in a multilayer stack with flat interfaces [4345, 115, 231]. Thus, we will not repeat the whole derivation, but instead give a short summary of the underlying idea. The situation most relevant for organic solar cells is that of normal incidence of light on a glass substrate with a thickness much larger than the wavelength of light followed by several layers with thicknesses comparable or smaller than the wavelength of light. Thus, the glass substrate is first treated incoherently with Lambert–Beer and then the following multi-layer stack is treated with the transfer matrix formalism. Figure 9 shows the general layout of the problem. Light is incident from the left, perpendicular to the surface of the solar cell. To calculate the left and right going electric fields in any layer as a function of the electric fields at the interface between substrate and first layer, we need to define matrices for each interface and each layer. The interface between layers j and k is represented by one interface matrix [43, 44]

Fig. 9
figure 9

Definition of the electric fields in a multilayer stack consisting of m layers. The matrix transfer formalism uses a matrix for every interface and every layer to express the in- and outgoing electric field on the left of the stack to the in- and outgoing electric field on the right of the stack. With this formalism we can calculate the electric field everywhere in the device and finally the position dependent generation rate

$$ {M}_{\mathrm{jk}}^{\mathrm{I}}=\frac{1}{t_{\mathrm{jk}}}\left(\begin{array}{cc}\hfill 1\hfill & \hfill {r}_{\mathrm{jk}}\hfill \\ {}\hfill {r}_{\mathrm{jk}}\hfill & \hfill 1\hfill \end{array}\right). $$
(24)

where

$$ {r}_{\mathrm{j}\mathrm{k}}=\frac{{\tilde{n}}_{\mathrm{j}}-{\tilde{n}}_{\mathrm{k}}}{{\tilde{n}}_{\mathrm{j}}+{\tilde{n}}_{\mathrm{k}}} $$
(25)

and

$$ {t}_{\mathrm{j}\mathrm{k}}=\frac{2{\tilde{n}}_{\mathrm{j}}}{{\tilde{n}}_{\mathrm{j}}+{\tilde{n}}_{\mathrm{k}}} $$
(26)

are the Fresnel reflection and transmission coefficients for the special case of normal incidence. The layers are characterized by their complex refractive index \( {\tilde{n}}_{\mathrm{j}}={n}_{\mathrm{j}}+ i{k}_{\mathrm{j}} \) and their thickness d j. The thickness becomes relevant for the calculation of the layer matrix [43, 44]

$$ {M}_{\mathrm{j}}^{\mathrm{L}}=\left(\begin{array}{cc}\hfill \exp \left(- i\frac{2\pi {\tilde{n}}_{\mathrm{j}}{d}_{\mathrm{j}}}{\lambda}\right)\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill \exp \left( i\frac{2\pi {\tilde{n}}_{\mathrm{j}}{d}_{\mathrm{j}}}{\lambda}\right)\hfill \end{array}\right). $$
(27)

Using the interface and layer matrices, we can express the electric field everywhere in the device as a function of the incoming and outgoing electric field E 0 at the interface between substrate and first layer via

$$ \left(\begin{array}{c}\hfill {E}_0^{+}\hfill \\ {}\hfill {E}_0^{-}\hfill \end{array}\right)={M}_{01}^{\mathrm{I}}{M}_1^{\mathrm{L}}{M}_{12}^{\mathrm{I}}\dots {M}_m^{\mathrm{L}}{M}_{m m+1}^{\mathrm{I}}\left(\begin{array}{c}\hfill {E}_{m+1}^{+}\hfill \\ {}\hfill {E}_{m+1}^{-}\hfill \end{array}\right). $$
(28)

Using this concept the electric field everywhere in the device can be calculated which we can use for the calculation of the generation rate at any position x.

The group of Prof. McGehee in Stanford offers a free transfer matrix modelling code on their homepage. The code is available in Matlab and Python and contains a database with the complex refractive indices of common materials of relevance for photovoltaics. More information is available on http://www.stanford.edu/group/mcgehee/transfermatrix/ (accessed 3/1/2013).

Appendix 2: Shockley–Read–Hall Recombination

Let us assume we are dealing with a trap level in the band gap as shown in Fig. 10. To understand how much recombination would be caused by this trap level we would need to know the occupation of that trap level. Initially we would not know which quasi-Fermi level (electrons or holes) would control the occupation of that trap level. This would also depend on how much interaction that trap level has with the conduction band and the valence band. It would depend on whether the trap level is a trap in the fullerene phase, in the polymer phase or at the interface of both. In addition, especially, if the trap can easily interact with both conduction and valence band, we will see that neither the electron nor hole quasi-Fermi level will be able to control the occupation probability of this trap. Instead, we would have to define a new occupation statistics for the trap that is different from that of both conduction and valence band. This new occupation statistics would not necessarily look like a Fermi–Dirac statistics so we might not be able to define a quasi-Fermi level for a trap at all.

Fig. 10
figure 10

Definition of the four rates of capture and emission of electrons and holes by a single trap level. These four rate equations are the basis of Shockley–Read–Hall statistics, which defines the occupation probability and the recombination rate via this trap

To find the occupation statistics for a trap – the Shockley–Read–Hall statistics [232, 233] – we need to consider the four processes shown in Fig. 10. A single trap can capture and emit an electron and capture and emit a hole. If the same trap captures a hole and an electron, one recombination event happens. If a trap captures and emits an electron or a hole, the trap will have slowed down transport only. Table 3 summarizes the four rates that we need to consider. However, the four rates are not independent of each other in quasi-equilibrium. Because in equilibrium, detailed balance between inverse processes must be obeyed, the capture and emission processes must be connected. In addition, in thermal equilibrium the occupation function for all charge carriers (free or trapped, electrons or holes) must be the Fermi–Dirac function in thermal equilibrium, i.e.

Table 3 Capture and emission rates of single electron trap states
$$ {f}_{\mathrm{theq}}=\frac{1}{\left[1+ \exp \left(\frac{E-{E}_{\mathrm{F}}}{kT}\right)\right]}. $$
(29)

Thus, we can connect the capture coefficients β n,p and the emission coefficients e n,p using the conditions r 1(f theq) = r 2(f theq) and r 3(f theq) = r 4(f theq). This leads to the conditions

$$ \begin{array}{l}{e}_{\mathrm{n}}={\beta}_{\mathrm{n}}{N}_{\mathrm{c}} \exp \left(\frac{E_{\mathrm{t}}-{E}_{\mathrm{c}}}{kT}\right)\\ {}{e}_{\mathrm{p}}={\beta}_{\mathrm{p}}{N}_{\mathrm{v}} \exp \left(\frac{E_{\mathrm{v}}-{E}_{\mathrm{t}}}{kT}\right),\end{array} $$
(30)

where we used n = N c exp(−(E c − E F)/kT) and p = N v exp((E v − E F)/kT). Now, we can compute the steady-state but non-equilibrium solution for the occupation probability f. Steady state means that the occupation probability of the trap does not change over time. Therefore, the rates need to obey

$$ {r}_1-{r}_2={r}_3-{r}_4. $$
(31)

Using (30) and (31) and the rates defined in Table 3, we can calculate the occupation probability f srh of our trap level as

$$ {f}_{\mathrm{srh}}=\frac{n{\beta}_{\mathrm{n}}+{e}_{\mathrm{p}}}{n{\beta}_{\mathrm{n}}+ p{\beta}_{\mathrm{p}}+{e}_{\mathrm{n}}+{e}_{\mathrm{p}}} $$
(32)

Note that this occupation probability has indeed no longer the same shape as a Fermi–Dirac distribution. Instead of one inflection point (the Fermi level in Fermi–Dirac statistics), there are two inflection points that are sometimes called quasi-Fermi levels for trapped charge [234, 235].

Either from r 1 to r 2 or from r 3 to r 4, we can now calculate the net recombination rate R via the trap or indeed any distribution N t(E) of traps via

$$ R={\displaystyle {\int}_{E_{\mathrm{v}}}^{E_{\mathrm{c}}}{N}_{\mathrm{t}}(E){\beta}_{\mathrm{n}}{\beta}_{\mathrm{p}}}\frac{ n p-{n}_{\mathrm{i}}^2}{n{\beta}_{\mathrm{n}}+ p{\beta}_{\mathrm{p}}+{e}_{\mathrm{n}}+{e}_{\mathrm{p}}}\mathrm{d} E. $$
(33)

Thus, in the case of a single trap level with concentration N t, the recombination rate would be

$$ R={N}_{\mathrm{t}}{\beta}_{\mathrm{n}}{\beta}_{\mathrm{p}}\frac{ n p-{n}_{\mathrm{i}}^2}{n{\beta}_{\mathrm{n}}+ p{\beta}_{\mathrm{p}}+{e}_{\mathrm{n}}+{e}_{\mathrm{p}}}. $$
(34)

which is the result often found in textbooks.

Appendix 3: Software

In the following, we will briefly discuss some programs the authors have used and found helpful for doing simulations of thin-film solar cells. The first two programs (ASA, SCAPS) are developed for inorganic solar cells but provide the basic functionality necessary for one-dimensional effective medium simulations. In all cases, detailed information is available on the respective homepages, so the main aim of this section is to make the reader aware of the existence of certain tools rather than to give a detailed assessment of the capabilities of the programs.

3.1 ASA (Zeman Group, Delft)

ASA (Advanced Semiconductor Analysis) has been developed by the group of Prof. Miro Zeman at the Technical University of Delft in the Netherlands as simulation software optimized for amorphous silicon solar cells [236]. Because of this focus on amorphous silicon, the software has several features that make it advantageous for one-dimensional drift-diffusion simulations of organic semiconductors as well. ASA can simulate both the spatially resolved generation rate based on a transfer matrix formalism and the electrical transport and recombination of charges in a multilayer system with a distribution of subgap defects. ASA allows the use of two exponential band tails and one amphoteric Gaussian defect. The inclusion of optical models means that electro-optical simulations are very simple. ASA works by reading in scripts containing the input parameters. It is therefore possible to change variables in these scripts using external programming languages or software like Matlab and therefore control the whole software via external scripts. Figures for this review have been made mostly using ASA and loops to change variables were written in Matlab. This flexibility allows users to use ASA in innovative ways that have nothing to do with the original application of amorphous Si solar cells. One option is to include field dependent photogeneration [75]. This can be done by running ASA once using field independent photogeneration, then reading in the optical generation and the electric field calculated by ASA and finally repeating the electrical calculation until the field no longer changes. Using this technique it is possible to use a commercially available drift-diffusion simulator and concentrate on adding extra features without needing to access the source code of ASA.

Because of the focus of thin-film silicon research on light trapping schemes to optimize light absorption, ASA also contains models to deal with light trapping and to allow the calculation of photogeneration rates with rough scattering surfaces. This may be advantageous for future work on light trapping in organic solar cells as well [237]. In addition, ASA is well suited to model tandem solar cells, also a typical application for thin-film silicon solar cells [230] and likely to be of increasing relevance for organic photovoltaics [15, 238, 239].

ASA is sold by the TU Delft. More information on ASA can be found under the following URL: http://www.ewi.tudelft.nl/en/the-faculty/departments/electrical-sustainable-energy/photovoltaic-materials-and-devices/asa-software/ (accessed 3/1/2013)

3.2 SCAPS (Burgelman Group, Ghent)

SCAPS (Solar Cell Capacitance Simulator) is software developed by the group of Prof. Marc Burgelman at the University of Ghent in Belgium. It was originally developed for use with compound semiconductor thin-film photovoltaics, i.e. for devices based on Cu(In,Ga)Se2 or CdTe absorbers [228, 229, 240, 241]. However, the electrical models provide a basic functionality similar to that of ASA without having sophisticated optical models. Generation rates calculated with a transfer matrix formalism (which can be done with freeware as shown below) can be imported. The main advantage of SCAPS is that not only steady-state simulations but also frequency domain simulations can be performed. This option allows one to model the capacitance as a function of voltage, frequency and temperature and to use SCAPS for interpretation of impedance spectra [136] and Mott–Schottky plots [49]. In addition, SCAPS is comparatively easy to learn and intuitive to control. More information on SCAPS can be found under the following URL: http://users.elis.ugent.be/ELISgroups/solar/projects/scaps/

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kirchartz, T., Nelson, J. (2013). Device Modelling of Organic Bulk Heterojunction Solar Cells. In: Beljonne, D., Cornil, J. (eds) Multiscale Modelling of Organic and Hybrid Photovoltaics. Topics in Current Chemistry, vol 352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_473

Download citation

Publish with us

Policies and ethics