Skip to main content

Luminescence Amplification Strategies Integrated with Microparticle and Nanoparticle Platforms

  • Chapter
  • First Online:
Luminescence Applied in Sensor Science

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 300))

Abstract

The amplification of luminescence signals is often the key to sensitive and powerful detection protocols. Besides optimized fluorescent probes and labels, functionalized nano- and microparticles have received strongly increasing attention in this context during the past decade. This contribution introduces the main signalling concepts for particle-based amplification strategies and stresses, especially the important role that metal and semiconductor nanoparticles play in this field. Besides resonance energy transfer, metal-enhanced emission and the catalytic generation of luminescence, the impact of multi-chromophoric objects such as dye nanocrystals, dendrimers, conjugated polymers or mesoporous hybrid materials is assessed. The representative examples discussed cover a broad range of analytes from metal ions and small organic molecules to oligonucleotides and enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The IUPAC-approved term for FRET is Förster RET [14]. ‘Fluorescence resonance energy transfer’ is commented on as the: Term frequently and inappropriately applied to resonance energy transfer in the sense of Förster-resonance energy transfer (FRET), which does not involve the emission of radiation. In contrast, the literature uses both terms Förster RET and fluorescence RET with the latter even dominating in the biochemical and bioanalytical communities. Despite the correct classification by the IUPAC, the scientist is in a dilemma when trying to distinguish between FRET, BRET and CRET, all Förster-type processes which differ only in the properties of the donor. Interestingly, BRET and CRET are not included in the IUPAC Photochemistry Commission’s recommendations. In the present case, it seems more appropriate for us to use FRET for a RET involving a potentially fluorescent donor and BRET (CRET) for a RET involving a potentially bioluminescent (chemiluminescent) donor here.

References

  1. Lakowicz JR (ed) (1992–2006) Topics in fluorescence spectroscopy series, vols 1–11. Plenum, New York and Springer, Berlin

    Google Scholar 

  2. Wolfbeis OS (ed) (2001–2008) Springer series on fluorescence, vols 1–6. Springer, Berlin

    Google Scholar 

  3. Demchenko A (2009) Introduction to fluorescence sensing. Springer, Berlin

    Google Scholar 

  4. Seidel M, Gauglitz G (2003) Miniaturization and parallelization of fluorescence immunoassays in nanotiter plates. Trends Anal Chem 22:385–394

    CAS  Google Scholar 

  5. LaFratta CN, Walt DR (2008) Very high density sensing arrays. Chem Rev 108:614–637

    CAS  Google Scholar 

  6. Hunt HC, Wilkinson JS (2008) Optofluidic integration for microanalysis. Microfluid Nanofluid 4:53–79

    CAS  Google Scholar 

  7. Myers FB, Lee LP (2008) Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 8:2015–2031

    CAS  Google Scholar 

  8. Rurack K, Resch-Genger U (2002) Rigidization, preorientation and electronic decoupling – the ‘magic triangle’ for the design of highly efficient fluorescent sensors and switches. Chem Soc Rev 31:116–127

    CAS  Google Scholar 

  9. Gill P, Ghaemi A (2008) Nucleic acid isothermal amplification technologies – a review. Nucleosides Nucleotides Nucleic Acids 27:224–243

    CAS  Google Scholar 

  10. Descalzo AB, Zhu S, Fischer T et al (2010) Optimization of the coupling of target recognition and signal generation. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology. II. Molecular constructions, polymers and nanoparticles. Springer, Berlin, pp 41–106

    Google Scholar 

  11. Roda A, Guardigli M, Michelini E et al (2009) Nanobioanalytical luminescence: Förster-type energy transfer methods. Anal Bioanal Chem 393:109–123

    CAS  Google Scholar 

  12. Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations. Angew Chem Int Ed 45:4562–4588

    CAS  Google Scholar 

  13. Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys 2:55–75

    Google Scholar 

  14. Braslavsky SE (2007) Glossary of terms used in photochemistry. 3rd edition (IUPAC Recommendations 2006). Pure Appl Chem 79:293–465

    CAS  Google Scholar 

  15. Boute N, Jockers R, Issad T (2002) The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol Sci 23:351–354

    CAS  Google Scholar 

  16. Eidne KA, Kroeger KM, Hanyaloglu AC (2002) Applications of novel resonance energy transfer techniques to study dynamic hormone receptor interactions in living cells. Trends Endocrinol Metab 13:415–421

    CAS  Google Scholar 

  17. Chen J, Zeng F, Wu S et al (2009) A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles. Nanotechnology 20:365502

    Google Scholar 

  18. Roberts DV, Wittmershaus BP, Zhang YZ et al (1998) Efficient excitation energy transfer among multiple dyes in polystyrene microspheres. J Lumin 79:225–231

    CAS  Google Scholar 

  19. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317

    CAS  Google Scholar 

  20. Wang L, Tan W (2006) Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett 6:84–88

    CAS  Google Scholar 

  21. Chen X, Estevez MC, Zhu Z et al (2009) Using aptamer-conjugated fluorescence resonance energy transfer nanoparticles for multiplexed cancer cell monitoring. Anal Chem 81:7009–7014

    CAS  Google Scholar 

  22. Bünzli JCG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34:1048–1077

    Google Scholar 

  23. Härmä H, Soukka T, Lövgren T (2001) Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clin Chem 47:561–568

    Google Scholar 

  24. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    CAS  Google Scholar 

  25. Wei Q, Wei A (2010) Signal generation with gold nanoparticles: photophysical properties for sensor and imaging applications. In: Rurack K, Martínez-Máñez R (eds) The supramolecular chemistry of organic-inorganic hybrid materials. Wiley, Hoboken, NJ, pp 319–349

    Google Scholar 

  26. Dulkeith E, Ringler M, Klar TA et al (2005) Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett 5:585–589

    CAS  Google Scholar 

  27. Huang CC, Chang HT (2006) Selective gold-nanoparticle-based “turn-on” fluorescent sensors for detection of mercury(II) in aqueous solution. Anal Chem 78:8332–8338

    CAS  Google Scholar 

  28. He X, Liu H, Li Y et al (2005) Gold nanoparticle-based fluorometric and colorimetric sensing of copper(II) ions. Adv Mater 17:2811–2815

    CAS  Google Scholar 

  29. Mayilo S, Kloster MA, Wunderlich M et al (2009) Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac tropnini T. Nano Lett 9:4558–4563

    CAS  Google Scholar 

  30. Ray PC, Fortner A, Darbha GK (2006) Gold nanoparticle based FRET assay for the detection of DNA cleavage. J Phys Chem B 110:20745–20748

    CAS  Google Scholar 

  31. Gill R, Zayats M, Willner I (2008) Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed 47:7602–7625

    CAS  Google Scholar 

  32. Frasco MF, Chaniotakis N (2010) Bioconjugated quantum dots as fluorescent probes for bioanalytical applications. Anal Bioanal Chem 396:229–240

    CAS  Google Scholar 

  33. Jorge PAS, Martins MA, Trindade T et al (2007) Optical fiber sensing using quantum dots. Sensors 7:3489–3534

    CAS  Google Scholar 

  34. Han M, Gao X, Su JZ et al (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635

    CAS  Google Scholar 

  35. Clapp AR, Medintz IL, Mattoussi H (2006) Förster resonance energy transfer investigations using quantum-dot fluorophores. ChemPhysChem 7:47–57

    CAS  Google Scholar 

  36. Algar WR, Krull UJ (2008) Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal Bioanal Chem 391:1609–1618

    CAS  Google Scholar 

  37. Lee S, Park K, Kim K et al (2008) Activatable imaging probes with amplified fluorescent signals. Chem Commun 4250–4260

    Google Scholar 

  38. Hering VR, Gibson G, Schumacher RI et al (2007) Energy transfer between CdSe/ZnS core/shell quantum dots and fluorescent proteins. Bioconjug Chem 18:1705–1708

    CAS  Google Scholar 

  39. Willard DM, Mutschler T, Yu M et al (2006) Directing energy flow through quantum dots: towards nanoscale sensing. Anal Bioanal Chem 384:564–571

    CAS  Google Scholar 

  40. Tomczak N, Janczewski D, Han MY et al (2009) Designer polymer-quantum dot architectures. Prog Polym Sci 34:393–430

    CAS  Google Scholar 

  41. Freeman R, Li Y, Tel-Vered R et al (2009) Self-assembly of supramolecular aptamer structures for optical or electrochemical sensing. Analyst 134:653–656

    CAS  Google Scholar 

  42. Goldman ER, Medintz IL, Whitley JL et al (2005) A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. J Am Chem Soc 127:6744–6751

    CAS  Google Scholar 

  43. Wang X, Guo X (2009) Ultrasensitive Pb2+ detection based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. Analyst 134:1348–1354

    CAS  Google Scholar 

  44. Tang B, Cao L, Xu K et al (2008) A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles. Chem Eur J 14:3637–3644

    CAS  Google Scholar 

  45. Jiang G, Susha AS, Lutich AA et al (2009) Cascaded FRET in conjugated polymer/quantum dot/dye-labeled DNA complexes for DNA hybridization detection. ACS Nano 12:4127–4131

    Google Scholar 

  46. So MK, Xu C, Loening AM et al (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24:339–343

    CAS  Google Scholar 

  47. Huang X, Li L, Qian H et al (2006) A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem Int Ed 45:5140–5143

    CAS  Google Scholar 

  48. Zhao S, Huang Y, Shi M et al (2010) Chemiluminescence resonance energy transfer-based detection for microchip electrophoresis. Anal Chem 82:2036–2041

    CAS  Google Scholar 

  49. Naruke H, Mori T, Yamase T (2009) Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor. Opt Mater 31:1483–1487

    CAS  Google Scholar 

  50. Wang X, Li YD (2007) Monodisperse nanocrystals: general synthesis, assembly, and their applications. Chem Commun 2901–2910

    Google Scholar 

  51. Jalil RA, Zhang Y (2008) Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials 29:4122–4128

    Google Scholar 

  52. Wang L, Yan R, Huo Z et al (2005) Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem Int Ed 44:6054–6057

    CAS  Google Scholar 

  53. Kuningas K, Ukonaho T, Päkkilä H et al (2006) Upconversion fluorescence resonance energy transfer in a homogeneous immunoassay for estradiol. Anal Chem 78:4690–4696

    CAS  Google Scholar 

  54. Rantanen T, Päkkilä H, Jämsen L et al (2007) Tandem dye acceptor used to enhance upconversion fluorescence resonance energy transfer in homogeneous assays. Anal Chem 79:6312–6318

    CAS  Google Scholar 

  55. Bonacchi S, Genovese D, Juris R et al (2010) Luminescent chemosensors based on silica nanoparticles. Top Curr Chem [this volume]

    Google Scholar 

  56. Zhou Q, Swager TM (1995) Fluorescent chemosensors based on energy migration in conjugated polymers: the molecular wire approach to increased sensitivity. J Am Chem Soc 117:12593–12602

    CAS  Google Scholar 

  57. Thomas SW III, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386

    CAS  Google Scholar 

  58. Baier MC, Huber J, Mecking S (2009) Fluorescent conjugated polymer nanoparticles by polymerization in miniemulsion. J Am Chem Soc 131:14267–14273

    CAS  Google Scholar 

  59. Wu C, Szymanski C, Cain Z et al (2007) Conjugated polymer dots for multiphoton fluorescence imaging. J Am Chem Soc 129:12904–12905

    CAS  Google Scholar 

  60. Wu C, Bull B, Szymanski C et al (2008) Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2:2415–2423

    CAS  Google Scholar 

  61. Moon JH, McDaniel W, MacLean P et al (2007) Live-cell-permeable poly(p-phenylene ethynylene). Angew Chem Int Ed 46:8223–8225

    CAS  Google Scholar 

  62. Howes P, Thorogate R, Green M et al (2009) Synthesis, characterisation and intracellular imaging of PEG capped BEHP-PPV nanospheres. Chem Commun 2490–2492

    Google Scholar 

  63. Wosnick JH, Liao JH, Swager TM (2005) Layer-by-layer poly(phenylene ethynylene) films on silica microspheres for enhanced sensory amplification. Macromolecules 38:9287–9290

    CAS  Google Scholar 

  64. McQuade DT, Hegedus AH, Swager TM (2000) Signal amplification of a “turn-on” sensor: harvesting the light captured by a conjugated polymer. J Am Chem Soc 122:12389–12390

    CAS  Google Scholar 

  65. Liu B, Bazan GC (2004) Homogeneous fluorescence-based DNA detection with water-soluble conjugated polymers. Chem Mater 16:4467–4476

    CAS  Google Scholar 

  66. Wang Y, Liu B (2009) Conjugated polymer as a signal amplifier for novel silica nanoparticle-based fluoroimmunoassay. Biosens Bioelectron 24:3293–3298

    CAS  Google Scholar 

  67. Wang Y, Liu B (2007) Silica nanoparticle assisted DNA assays for optical signal amplification of conjugated polymer based fluorescent sensors. Chem Commun 3553–3555

    Google Scholar 

  68. Wang Y, Liu B (2009) Conjugated polyelectrolyte-sensitized fluorescent detection of thrombin in blood serum using aptamer-immobilized silica nanoparticles as the platform. Langmuir 25:12787–12793

    CAS  Google Scholar 

  69. Pu KY, Li K, Liu B (2010) Cationic oligofluorene-substituted polyhedral oligomeric silsesquioxane as light-harvesting unimolecular nanoparticle for fluorescence amplification in cellular imaging. Adv Mater 22:643–646

    CAS  Google Scholar 

  70. Lowe M, Spiro A, Zhang YZ et al (2004) Multiplexed, particle-based detection of DNA using flow cytometry with 3DNA dendrimers for signal amplification. Cytometry A 60A:135–144

    CAS  Google Scholar 

  71. Wängler C, Moldenhauer G, Saffrich R et al (2008) PAMAM structure-based multifunctional fluorescent conjugates for improved fluorescent labelling of biomacromolecules. Chem Eur J 14:8116–8130

    Google Scholar 

  72. Balzani V, Ceroni P, Gestermann S et al (2000) Dendrimers as fluorescent sensors with signal amplification. Chem Commun 853–854

    Google Scholar 

  73. Balzani V, Ceroni P, Gestermann S et al (2000) Effect of protons and metal ions on the fluorescence properties of a polylysin dendrimer containing twenty four dansyl units. J Chem Soc Dalton Trans 3765–3771

    Google Scholar 

  74. Vögtle F, Gestermann S, Kauffmann C et al (2000) Coordination of Co2+ ions in the interior of poly(propylene amine) dendrimers containing fluorescent dansyl units in the periphery. J Am Chem Soc 122:10389–10404

    Google Scholar 

  75. Pugh VJ, Hu QS, Zuo X et al (2001) Optically active BINOL core-based phenyleneethynylene dendrimers for the enantioselective fluorescent recognition of amino alcohols. J Org Chem 66:6136–6140

    CAS  Google Scholar 

  76. Xu MH, Lin J, Hu QS et al (2002) Fluorescent sensors for the enantioselective recognition of mandelic acid: signal amplification by dendritic branching. J Am Chem Soc 124:14239–14246

    CAS  Google Scholar 

  77. Guo M, Varnavski O, Narayanan A et al (2009) Investigations of energy migration in an organic dendrimer macromolecule for sensory signal amplification. J Phys Chem A 113:4763–4771

    CAS  Google Scholar 

  78. Trau D, Yang W, Seydack M et al (2002) Nanoencapsulated microcrystalline particles for superamplified biochemical assays. Anal Chem 74:5480–5486

    CAS  Google Scholar 

  79. Chan CP, Bruemmel Y, Seydack M et al (2004) Nanocrystal biolabels with releasable fluorophores for immunoassays. Anal Chem 76:3638–3645

    CAS  Google Scholar 

  80. Sin KK, Chan CPY, Pang TH et al (2006) A highly sensitive fluorescent immunoassay based on avidin-labeled nanocrystals. Anal Bioanal Chem 384:638–644

    CAS  Google Scholar 

  81. Chan CP, Tzang LC, Sin K et al (2007) Biofunctional organic nanocrystals for quantitative detection of pathogen deoxyribonucleic acid. Anal Chim Acta 584:7–11

    CAS  Google Scholar 

  82. Truneh A, Machy P, Horan PK (1987) Antibody-bearing liposomes as multicolor immunofluorescence markers for flow cytometry and imaging. J Immunol Methods 100:59–71

    CAS  Google Scholar 

  83. Schott H, Von Cunow D, Langhals H (1992) Labeling of liposomes with intercalating perylene fluorescent dyes. Biochim Biophys Acta 1110:151–157

    CAS  Google Scholar 

  84. Edwards KA, Baeumner AJ (2006) Optimization of DNA-tagged liposomes for use in microtiter plate analyses. Anal Bioanal Chem 386:1613–1623

    CAS  Google Scholar 

  85. Rongen HAH, Bult A, van Bennekom WP (1997) Liposomes and immunoassays. J Immunol Methods 204:105–133

    CAS  Google Scholar 

  86. Anraku Y, Kishimura A, Oba M et al (2010) Spontaneous formation of nanosized unilamellar polyion complex vesicles with tunable size and properties. J Am Chem Soc 132:1631–1636

    CAS  Google Scholar 

  87. Slowing II, Trewyn BG, Lin VSY (2010) Nanogated mesoporous silica materials. In: Rurack K, Martínez-Máñez R (eds) The supramolecular chemistry of organic-inorganic hybrid materials. Wiley, Hoboken, NJ, pp 479–502

    Google Scholar 

  88. Patel K, Angelos S, Dichtel WR et al (2008) Enzyme-responsive snap-top covered silica nanocontainers. J Am Chem Soc 130:2382–2383

    CAS  Google Scholar 

  89. Bernardos A, Aznar E, Marcos MD et al (2009) Enzyme-responsive controlled release using mesoporous silica supports capped with lactose. Angew Chem Int Ed 48:5884–5887

    CAS  Google Scholar 

  90. Climent E, Marcos M, Martínez-Máñez R et al (2009) The determination of methylmercury in real samples using organically capped mesoporous inorganic materials capable of signal amplification. Angew Chem Int Ed 48:8519–8522

    CAS  Google Scholar 

  91. Ros-Lis JV, García B, Jiménez D et al (2004) Squaraines as fluoro-chromogenic probes for thiol-containing compounds and their application to the detection of biorelevant thiols. J Am Chem Soc 126:4064–4065

    CAS  Google Scholar 

  92. Ros-Lis JV, Marcos MD, Martínez-Máñez R et al (2005) A regenerative chemodosimeter based on metal-induced dye formation for the highly selective and sensitive optical determination of Hg2+ ions. Angew Chem Int Ed 44:4405–4407

    CAS  Google Scholar 

  93. Cho DG, Sessler JL (2009) Modern reaction-based indicator systems. Chem Soc Rev 38:1647–1662

    CAS  Google Scholar 

  94. Zhao L, Sun L, Chu X (2009) Chemiluminescence immunoassay. Trends Anal Chem 28:404–415

    CAS  Google Scholar 

  95. Lin J, Liu M (2008) Chemiluminescence from the decomposition of peroxymonocarbonate catalyzed by gold nanoparticles. J Phys Chem B 112:7850–7855

    CAS  Google Scholar 

  96. Duan C, Cui H, Zhang Z et al (2007) Size-dependent inhibition and enhancement by gold nanoparticles of luminol-ferricyanide chemiluminescence. J Phys Chem C 111:4561–4566

    CAS  Google Scholar 

  97. Safavi A, Absalan G, Bamdad F (2008) Effect of gold nanoparticle as a novel nanocatalyst on luminol-hydrazine chemiluminescence system and its analytical application. Anal Chim Acta 610:243–248

    CAS  Google Scholar 

  98. Zhang Z, Cui H, Lai C et al (2005) Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Anal Chem 77:3324–3329

    CAS  Google Scholar 

  99. Crumbliss AL, Perine SC, Stonehuerner J et al (1992) Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnol Bioeng 40:483–490

    CAS  Google Scholar 

  100. Lan D, Li B, Zhang Z (2008) Chemiluminescence flow biosensor for glucose based on gold nanoparticle-enhanced activities of glucose oxidase and horseradish peroxidase. Biosens Bioelectron 24:934–938

    CAS  Google Scholar 

  101. Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104:3003–3036

    CAS  Google Scholar 

  102. Cui H, Xu Y, Zhang Z (2004) Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode. Anal Chem 76:4002–4010

    CAS  Google Scholar 

  103. Zanarini S, Rampazzo E, Della Ciana L et al (2009) Ru(bpy)3 covalently doped silica nanoparticles as multicenter tunable structures for electrochemiluminescence amplification. J Am Chem Soc 131:2260–2267

    CAS  Google Scholar 

  104. Li M, Chen Z, Yam VWW et al (2008) Multi functional ruthenium(II) polypyridine complex-based core-shell magnetic silica nanocomposites: magnetism, luminescence, and electrochemiluminescence. ACS Nano 2:905–912

    CAS  Google Scholar 

  105. Das P, Metiu H (1985) Enhancement of molecular fluorescence and photochemistry by small metal particles. J Phys Chem 89:4680–4687

    CAS  Google Scholar 

  106. Lakowicz JR, Ray K, Chowdhury M et al (2008) Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst 133:1308–1346

    CAS  Google Scholar 

  107. Morawitz H, Philpott MR (1974) Coupling of an excited molecule to surface plasmons. Phys Rev B 10:4863–4868

    Google Scholar 

  108. Philpott MR (1975) Effect of surface plasmons on transitions in molecules. J Chem Phys 62:1812–1817

    CAS  Google Scholar 

  109. Weber WH, Eagen CF (1979) Energy-transfer from an excited dye molecule to the surface-plasmons of an adjacent metal. Opt Lett 4:236–238

    CAS  Google Scholar 

  110. Benner RE, Dornhaus R, Chang RK (1979) Angular emission profiles of dye molecules excited by surface-plasmon waves at a metal-surface. Opt Commun 30:145–149

    CAS  Google Scholar 

  111. Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical application. Anal Biochem 298:1–24

    CAS  Google Scholar 

  112. Weitz DA, Garoff S, Hanson CD et al (1982) Fluorescent lifetimes of molecules on silver-island films. Opt Lett 7:89–91

    CAS  Google Scholar 

  113. Liebermann T, Knoll W (2000) Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids Surf 171:115–130

    CAS  Google Scholar 

  114. Gersten J, Nitzan A (1981) Spectroscopic properties of molecules interacting with small dielectric particles. J Chem Phys 75:1139–1152

    CAS  Google Scholar 

  115. Wokaun A, Lutz HP, King AP et al (1983) Energy-transfer in surface enhanced luminescence. J Chem Phys 79:509–514

    CAS  Google Scholar 

  116. Kümmerlen J, Leitner A, Brunner H et al (1993) Enhanced dye fluorescence over silver island films: analysis of the distance dependence. Mol Phys 80:1031–1046

    Google Scholar 

  117. Ford GW, Weber WH (1984) Electromagnetic-interactions of molecules with metal-surfaces. Phys Rep 113:195–287

    CAS  Google Scholar 

  118. Sokolov K, Chumanov G, Cotton TM (1998) Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal Chem 70:3898–3905

    CAS  Google Scholar 

  119. Knoll W (1998) Interfaces and thin films as seen by bound electromagnetic waves. Annu Rev Phys Chem 49:569–638

    CAS  Google Scholar 

  120. Lakowicz JR, Malicka J, Gryczynski I (2003) Silver particles enhance emission of fluorescent DNA oligomers. Biotechniques 34:62–68

    CAS  Google Scholar 

  121. Mafuné F, Kohno J, Takeda Y et al (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117

    Google Scholar 

  122. Lakowicz JR, Shen B, Gryczynski Z et al (2001) Intrinsic fluorescence from DNA can be enhanced by metallic particles. Biochem Biophys Res Commun 286:875–879

    CAS  Google Scholar 

  123. Diaspro A (1999) Introduction to two-photon microscopy. Microsc Res Tech 47:163–164

    CAS  Google Scholar 

  124. Gryczynski I, Malicka J, Shen Y et al (2002) Multiphoton excitation of fluorescence near metallic particles: enhanced and localized excitation. J Phys Chem B 106:2191–2195

    CAS  Google Scholar 

  125. Lukomska J, Gryczynski I, Malicka J et al (2005) Two-photon induced fluorescence of Cy5-DNA in buffer solution and on silver island films. Biochem Biophys Res Commun 328:78–84

    CAS  Google Scholar 

  126. De Beuckeleer K, Volckaert G, Engelborghs Y (1999) Time resolved fluorescence and phosphorescence properties of the individual tryptophan residues of barnase: evidence for protein-protein interactions. Proteins 36:42–53

    Google Scholar 

  127. Prochniewicz E, Janson N, Thomas DD et al (2005) Cofilin increases the torsional flexibility and dynamics of actin filaments. J Mol Biol 353:990–1000

    CAS  Google Scholar 

  128. Lettinga MP, van Kats CM, Philipse AP (2000) Rotational diffusion of tracer spheres in packings and dispersions of colloidal spheres studied with time-resolved phosphorescence anisotropy. Langmuir 16:6166–6172

    CAS  Google Scholar 

  129. Zhang Y, Aslan K, Previte MJR et al (2006) Metal-enhanced phosphorescence: interpretation in terms of triplet-coupled radiating plasmons. J Phys Chem B 110:25108–25114

    CAS  Google Scholar 

  130. Gersten J, Nitzan A (1984) Accelerated energy transfer between molecules near a solid particle. Chem Phys Lett 104:31–37

    CAS  Google Scholar 

  131. Hua XM, Gersten J, Nitzan A (1985) Theory of energy transfer between molecules near solid state particles. J Chem Phys 83:3650–3659

    CAS  Google Scholar 

  132. Lakowicz JR, Kuśba J, Shen Y et al (2003) Effects of metallic silver particles on resonance energy transfer between fluorophores bound to DNA. J Fluoresc 13:69–77

    CAS  Google Scholar 

  133. Zhang J, Fu Y, Lakowicz JR (2007) Enhanced Förster resonance energy transfer (FRET) on a single metal particle. J Phys Chem C 111:50–56

    CAS  Google Scholar 

  134. Zhang J, Fu Y, Chowdhury MH et al (2007) Enhanced Förster resonance energy transfer on single metal particle. 2. Dependence on donor-acceptor separation distance, particle size, and distance from metal surface. J Phys Chem C 111:11784–11792

    CAS  Google Scholar 

  135. Lessard-Viger M, Rioux M, Rainville L et al (2009) FRET enhancement in multilayer core-shell nanoparticles. Nano Lett 9:3066–3071

    CAS  Google Scholar 

  136. Govorov AO, Lee J, Kotov NA (2007) Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles. Phys Rev B 76:125308

    Google Scholar 

  137. Komarala VK, Bradley AL, Rakovich YP et al (2008) Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots. Appl Phys Lett 93:123102

    Google Scholar 

  138. Chan YH, Chen J, Wark SE et al (2009) Using patterned arrays of metal nanoparticles to probe plasmon enhanced luminescence of CdSe quantum dots. ACS Nano 3:1735–1744

    CAS  Google Scholar 

  139. Lee A, Coombs NA, Gourevich I et al (2009) Lamellar envelopes of semiconductor nanocrystals. J Am Chem Soc 131:10182–10188

    CAS  Google Scholar 

  140. Govorov AO (2008) Enhanced optical properties of a photosynthetic system conjugated with semiconductor nanoparticles: the role of Förster transfer. Adv Mater 20:4330–4335

    CAS  Google Scholar 

  141. Shan Y, Xu JJ, Chen HY (2009) Distance-dependent quenching and enhancing of electrochemiluminescence from a CdS: Mn nanocrystal film by Au nanoparticles for highly sensitive detection of DNA. Chem Commun 905–907

    Google Scholar 

  142. Shegai T, Huang Y, Xu H et al (2010) Coloring fluorescence emission with silver nanowires. Appl Phys Lett 96:103114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knut Rurack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhu, S., Fischer, T., Wan, W., Descalzo, A.B., Rurack, K. (2010). Luminescence Amplification Strategies Integrated with Microparticle and Nanoparticle Platforms. In: Prodi, L., Montalti, M., Zaccheroni, N. (eds) Luminescence Applied in Sensor Science. Topics in Current Chemistry, vol 300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2010_99

Download citation

Publish with us

Policies and ethics