Skip to main content

Luminescent Chemical Sensing, Biosensing, and Screening Using Upconverting Nanoparticles

  • Chapter
  • First Online:
Luminescence Applied in Sensor Science

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 300))

Abstract

Upconverting nanoparticles (UCNPs) display the unique property of converting near-infrared light (with wavelengths of typically 800–1,000 nm) into visible luminescence. Following a short introduction into the mechanisms leading to the effect, the main classes of materials used are discussed. We then review the state of the art of using UCNPs: (1) to label biomolecules such as antibodies and (synthetic) oligomers for use in affinity assay and flow assays; (2) to act as nanolamps whose emission intensity is modulated by chemical indicators, thus leading to a novel kind of chemical sensors; and (3), to act as donors in luminescence resonance energy transfer in chemical sensors and biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auzel F (2004) Upconversion and anti-Stokes processes with f and d ions in solids. Chem Rev 104:139–173

    Article  CAS  Google Scholar 

  2. Suyver JF, Aebischer A, Biner D, Gerner P, Grimm J, Heer S, Krämer KW, Reinhard C, Güdel HU (2005) Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Opt Mater 27:1111–1130

    Article  CAS  Google Scholar 

  3. Gamelin DR, Güdel HU (2001) Upconversion processes in transition metal and rare earth metal systems. In: Topics in Current Chemistry, vol 214. Springer, Berlin

    Google Scholar 

  4. Joubert MF (1999) Photon avalanche upconversion in rare earth laser materials. Opt Mater 11:181–203

    Article  CAS  Google Scholar 

  5. Rapaport A, Milliez J, Bass M, Cassanho A, Jenssen H (2006) Review of the properties of up-conversion phosphors for new emissive displays. J Disp Technol 2:68–79

    Article  CAS  Google Scholar 

  6. Wang F, Liu X (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38:976–989

    Article  CAS  Google Scholar 

  7. Wang L, Li Y (2007) Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem Mater 19:727–734

    Article  CAS  Google Scholar 

  8. Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124

    Article  CAS  Google Scholar 

  9. Liu X, Zhao J, Sun Y, Song K, Yu Y, Du C, Kong X, Zhang H (2009) Ionothermal synthesis of hexagonal phase NaYF4:Yb3+,Er3+/Tm3+ upconversion nanophosphors. Chem Commun 6628–6630

    Google Scholar 

  10. Heer S, Kömpe K, Güdel HU, Haase M (2004) Highly efficient multicolor upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv Mater 16:2102–2105

    Article  CAS  Google Scholar 

  11. Zhang H, Li Y, Ivanov IA, Qu Y, Huang Y, Duan X (2010) Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew Chem Int Ed 49:2865–2868

    Article  CAS  Google Scholar 

  12. Lü Q, Guo FY, Sun L, Li AH, Zhao LC (2008) Silica-/titania-coated Y2O3:Tm3+, Yb3+ nanoparticles with improvement in upconversion luminescence induced by different thickness shells. J Appl Phys 103:123533

    Article  Google Scholar 

  13. Lü Q, Li A, Guo F, Sun L, Zhao L (2008) Experimental study on the surface modification of Y2O3:Tm3+/Yb3+ nanoparticles to enhance upconversion fluorescence and weaken aggregation. Nanotechnology 19:145701

    Article  Google Scholar 

  14. Wang Y, Tu L, Zhao J, Sun Y, Kong X, Zhang H (2009) Upconversion luminescence of β-NaYF4:Yb3+, Er3+@ β-NaYF4 core/shell nanoparticles: excitation power density and surface dependence. J Phys Chem C 113:7164–7169

    Article  CAS  Google Scholar 

  15. Vetrone F, Boyer JC, Capobianco JA, Speghini A, Bettinelli M (2003) Concentration-dependent near-infrared to visible upconversion in nanocrystalline and bulk Y2O3:Er3+. Chem Mater 15:2737–2743

    Article  CAS  Google Scholar 

  16. Yi G, Lu H, Zhao S, Ge Y, Yang W, Chen D, Guo LH (2004) Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett 4:2191–2196

    Article  CAS  Google Scholar 

  17. Muth O, Brockmann H, Schmidt W, Bailleu A, Brauer G, Paeschke M, Ahlers B, Franz-Burgholz A, Zerbel H (2002) Eur Pat 1.241,021

    Google Scholar 

  18. Kim WJ, Nyk M, Prasad PN (2009) Color-coded multilayer photopatterned microstructures using lanthanide(III) ion co-doped NaYF4 nanoparticles with upconversion luminescence for possible applications in security. Nanotechnology 20:85301–185307

    Article  Google Scholar 

  19. Chatterjee DK, Fong LS, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 60:1627–1637

    Article  CAS  Google Scholar 

  20. Bechet D, Couleaud P, Frochot C, Viriot ML, Guillemin F, Barberi-Heyob M (2008) Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol 26:612–621

    Article  CAS  Google Scholar 

  21. Wang F, Liu X (2008) Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J Am Chem Soc 130:5642–5643

    Article  CAS  Google Scholar 

  22. Wang M, Mi C, Zhang Y, Liu J, Li F, Mao C, Xu S (2009) NIR-responsive silica-coated NaYF4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells. J Phys Chem C 113:19021–19027

    Article  CAS  Google Scholar 

  23. Wang G, Peng Q, Li Y (2010) Luminescence tuning of upconversion nanocrystals. Chem Eur J. doi:10.1002/chem.200903099

    Google Scholar 

  24. Chen GY, Liu HC, Somesfalean G, Sheng YQ, Liang HJ, Zhang ZG, Sun Q, Wang FP (2008) Enhancement of the upconversion radiation in Y2O3:Er3+ nanocrystals by codoping with Li+ ions. Appl Phys Lett 92:113114

    Article  Google Scholar 

  25. Yi GS, Chow GM (2007) Water-soluble NaYF4:Yb, Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem Mater 19:341–343

    Article  CAS  Google Scholar 

  26. Zijlmans HJMAA, Bonnet J, Burton J, Kardos K, Vail T, Niedbala RS, Tanke HJ (1999) Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology. Anal Biochem 267:30–36

    Article  CAS  Google Scholar 

  27. Zarling DA, Rossi MJ, Peppers NA, Kane J, Faris GW, Dyer MJ (1998) Up-converting reporters for biological and other assays using laser excitation techniques. US Patent 5,736,410

    Google Scholar 

  28. van de Rijke F, Zijlmans H, Li S, Vail T, Raap AK, Niedbala RS, Tanke HJ (2001) Up-converting phosphor reporters for nucleic acid microarrays. Nat Biotechnol 19:273–276

    Article  Google Scholar 

  29. Corstjens PLAM, van Lieshout L, Zuiderwijk M, Kornelis D, Tanke HJ, Deelder AM, van Dam GJ (2008) Up-converting phosphor technology-based lateral flow assay for detection of Schistosoma circulating anodic antigen in serum. J Clin Microbiol 46:171–176

    Article  CAS  Google Scholar 

  30. Malamud D, Bau H, Niedbala S, Corstjens P (2005) Point detection of pathogens in oral samples. Adv Dent Res 18:12–16

    Article  CAS  Google Scholar 

  31. Zuiderwijk M, Tanke HK, Niedbala RS, Corstjens PLMA (2003) An amplification-free hybridization-based DNA assay to detect Streptococcus pneumoniae utilizing the up-converting phosphor technology. Clin Biochem 36:401–403

    Article  CAS  Google Scholar 

  32. Corstjens P, Zuiderwijk M, Brink A, Li S, Feindt H, Niedbala RS, Tanke H (2001) Use of up-converting phosphor reporters in lateral-flow assays to detect specific nucleic acid sequences: a rapid, sensitive DNA test to identify human papillomavirus type 16 infection. Clin Chem 47:1885–1893

    CAS  Google Scholar 

  33. Corstjens PLAM, Zuiderwijk M, Nilsson M, Feindt H, Niedbala RS, Tanke HJ (2003) Lateral-flow and up-converting phosphor reporters to detect single-stranded nucleic acids in a sandwich-hybridization assay. Anal Biochem 312:191–200

    Article  CAS  Google Scholar 

  34. Niedbala RS, Feindt H, Kardos K, Vail T, Burton J, Bielska B, Li S, Milunic D, Bourdelle P, Vallejo R (2001) Detection of analytes by immunoassay using up-converting phosphor technolgy. Anal Biochem 293:22–30

    Article  CAS  Google Scholar 

  35. Corstjens PLAM, Zuiderwijk M, Tanke HJ, van der Ploeg-van Schip JJ, Ottenhoff THM, Geluk A (2008) A user-friendly, highly sensitive assay to detect the IFN-γ secretion by T-cells. Clin Biochem 41:440–444

    Article  CAS  Google Scholar 

  36. Corstjens PLAM, Chen Z, Zuiderwijk M, Bau HH, Abrams WR, Malamud D, Niedbala RS, Tanke HJ (2007) Rapid assay format for multiplex detection of humoral immune responses to infectious disease pathogens (HIV, HCV and TB). Ann NY Acad Sci 1098:437–445

    Article  CAS  Google Scholar 

  37. Corstjens PLAM, Li S, Zuiderwijk M, Kardos K, Abrams WR, Niedbala RS, Tanke HJ (2005) Infrared up-converting phosphors for bioassays. IEE Proc Nanobiotechnol 152:64–72

    Article  CAS  Google Scholar 

  38. Hampl J, Hall M, Mufti NA, Yao YMM, MacQueen DB, Wright WH, Cooper DE (2002) Upconverting phosphor reporters in immunochromatographic assays. Anal Biochem 288:176–187

    Article  Google Scholar 

  39. Li L, Zhou L, Yu Y, Zhu Z, Lin C, Lu C, Yang R (2009) Development of up-converting phosphor technology-based lateral-flow assay for rapidly quantitative detection of hepatitis B surface antibody. Diagn Microbiol Infect Dis 63:165–172

    Article  CAS  Google Scholar 

  40. Mokkapati VK, Niedbala RS, Kardos K, Perez RJ, Guo M, Tanke HJ, Corstjens PLAM (2007) Evaluation of Uplink RSV: prototype rapid antigen test for detection of respiratory syncytial virus infection. Ann NY Acad Sci 1098:476–485

    Article  CAS  Google Scholar 

  41. Steinmeyer S, Polzius R, Manns A (2005) Dräger drug test: test for illegal drugs in oral-fluid samples. In: Wong RC, Tse HY (eds) Drugs of abuse. Humana Press Inc, Totowa, New Jersey

    Google Scholar 

  42. Wright WH, Rundle G, Mufti NA, Yao YMM, Carlisle CB, Cooper DE (2007) Upconverting phosphors for detection and identification using antibodies. In: Van Emon JM (ed) Immunoassays and other bioanalytical techniques. CRC Press, Boca Raton

    Google Scholar 

  43. Li JJ, Ouellette AL, Giovangrandi L, Cooper DE, Ricco AJ, Kovacs GTA (2008) Optical scanner for immunoassays with up-converting phosphorescent labels. IEEE Trans Biomed Eng 55:1560–1571

    Article  Google Scholar 

  44. McDonagh C, Burke CS, MacCraith BD (2008) Optical chemical sensors. Chem Rev 108:400–422

    Article  CAS  Google Scholar 

  45. Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423–461

    Article  CAS  Google Scholar 

  46. Thevenot DR, Tóth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16:121–131

    Article  CAS  Google Scholar 

  47. Janata J (2009) Principles of chemical sensors, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  48. Sun L, Peng H, Stich MIJ, Achatz DE, Wolfbeis OS (2009) pH sensor based on upconverting luminescent lanthanide nanorods. Chem Commun 5000–5002

    Google Scholar 

  49. Wolfbeis OS, Werner T, Rodriguez NV, Kessler MA (1992) LED-compatible fluorosensor for measurement of near-neutral pH values. Mikrochim Acta 108:133–141

    Article  CAS  Google Scholar 

  50. Wolfbeis OS, Leiner M (1985) Mapping of the total fluorescence of human blood serum as a new method for its characterization. Anal Chim Acta 167:203–215

    Article  CAS  Google Scholar 

  51. Ali R, Saleh SM, Meier RJ, Azab HA, Elgawad I, Wolfbeis OS (2010) Upconverting Nanoparticle Based Optical Sensor for Carbon Dioxide. Sens Actuators B Chem 150:126–131

    Google Scholar 

  52. Mader HS, Wolfbeis OS (2010) Optical ammonia sensor based on upconverting luminescent nanoparticles. Anal Chem 82:5002–5004

    Article  CAS  Google Scholar 

  53. Wang XD, Chen HX, Zhao Y, Chen X (2010) Optical oxygen sensors move towards colorimetric determination. Trends Anal Chem 29:319–338

    Article  CAS  Google Scholar 

  54. Trettnak W, Wolfbeis OS (1990) Fiber optic cholesterol biosensor with an oxygen optrode as the transducer. Anal Biochem 184:124–127

    Article  CAS  Google Scholar 

  55. Weigl BH, Holobar A, Trettnak W, Klimant I, Kraus H, O'Leary P, Wolfbeis OS (1994) Optical triple sensor for measuring pH oxygen and carbon dioxide. J Biotechnol 32:127–138

    Article  CAS  Google Scholar 

  56. Borisov SM, Klimant I (2007) Ultrabright oxygen optodes based on cyclometalated iridium(III) coumarin complexes. Anal Chem 79:7501–7509

    Article  CAS  Google Scholar 

  57. Zhang P, Rogelj S, Nguyen K, Wheeler D (2006) Design of a highly sensitive and specific nucleotide sensor based on photon upconverting particles. J Am Chem Soc 128:12410–12411

    Article  CAS  Google Scholar 

  58. Kumar M, Guo Y, Zhang P (2009) Highly sensitive and selective oligonucleotide sensor for sickle cell disease gene using photon upconverting nanoparticles. Biosens Bioelectron 24:1522–1526

    Article  CAS  Google Scholar 

  59. Kumar M, Zhang P (2009) Highly sensitive and selective label-free optical detection of DNA hybridization based on photon upconverting nanoparticles. Langmuir 25:6024–6027

    Article  CAS  Google Scholar 

  60. Rantanen T, Järvenpää ML, Vuojola J, Arppe R, Kuningas K, Soukka T (2009) Upconverting phosphors in a dual-parameter LRET-based hybridization assay. Analyst 134:1713–1716

    Article  CAS  Google Scholar 

  61. Wang M, Hou W, Mi CC, Wang WX, Xu ZR, Teng HH, Mao CB, Xu SK (2009) Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles. Anal Chem 81:8783–8789

    Article  CAS  Google Scholar 

  62. Wang L, Yan R, Huo Z, Wang L, Zeng J, Bao J, Wang X, Peng Q, Li Y (2005) Fluorescence resonance energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem Int Ed Engl 117:6208–6211

    Article  Google Scholar 

  63. Rantanen T, Järvenpää ML, Vuojola J, Kuningas K, Soukka T (2008) Fluorescence-quenching-based enzyme-activity assay by using photon upconversion. Angew Chem Int Ed 47:3811–3813

    Article  CAS  Google Scholar 

  64. Ouellette AL, Li JJ, Cooper DE, Ricco AJ, Kovacs GTA (2009) Evolving point-of-care diagnostics using up-converting phosphor bioanalytical systems. Anal Chem 81:3216–3221

    Article  CAS  Google Scholar 

  65. Achatz DE, Meier RJ, Fischer LH, Wolfbeis OS (2010) Luminescent sensing of oxygen using a quenchable probe along with upconverting nanoparticles. Angew Chem Intl Ed 49 (in press). DOI: 10.1002/anie.201004902

    Google Scholar 

  66. Saleh SM, Ali R, Hirsch T, Wolfbeis OS (2010) Optical detection of biotin-avidin affinity binding by exploiting a self-referenced system composed of upconverting nanoparticles and gold nanoparticles. Biosens Bioelectron (Submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto S. Wolfbeis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Achatz, D.E., Ali, R., Wolfbeis, O.S. (2010). Luminescent Chemical Sensing, Biosensing, and Screening Using Upconverting Nanoparticles. In: Prodi, L., Montalti, M., Zaccheroni, N. (eds) Luminescence Applied in Sensor Science. Topics in Current Chemistry, vol 300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2010_98

Download citation

Publish with us

Policies and ethics