Skip to main content

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 298))

Abstract

Transfer of chirality is an intriguing issue worth studying to understand better the origin of life and for possible technological applications. In the last few years we have been working in this area studying the chain of events that begins with induction, reaches a permanent transfer (chiral memory) and extends in some cases to a (quasi-)reversible situation in which induced and permanently memorized chirality coexists. This can happen thanks to a designed blend of thermodynamics and kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    On the contrary, no CD signal is observed when the two porphyrins are mixed in pure water (pH 2.3).

  2. 2.

    The formation of the J aggregates is hierarchically controlled. The only way to obtain these species is by allowing porphyrin aggregation with Λ− or Δ−[Ru(phen)3]2+ at a pH value of around 6 and then decreasing the pH to 2.5.

  3. 3.

    The CD signal of the (Δ−[Ru(phen)3]2+/H2TPPS) complex is absent because the formation of the complex is slow. The signal appears after 10–15 min.

  4. 4.

    Memory of chirality is lost if the pH value is raised to 8.

  5. 5.

    After about five pH cycles the solution becomes milky and scatters because of the formation of extended aggregates: this causes a decrease of the CD intensity.

  6. 6.

    Melting experiments were also performed: the ICD of Λ− or Δ−[Ru(phen)3]2+/J aggregates disappears at around 90°C. By lowering temperature at 25°C we have obtained the starting signal shape.

  7. 7.

    If chirality is induced at the assembling onset then they will “remember” the shape during their growth leading to chiral amplification [46].

  8. 8.

    This is also the most common situation owing to the “impossibility” to get pure water.

  9. 9.

    The UV part of the CD spectrum, reporting [Ru(Phen)3]2+ chirality, is not affected by stirring confirming that ruthenium complexes are free in solution and not part of the J-aggregates. Also for the analogous system with the Λ enantiomer no deposition of the Δ enantiomer is observed in spite of the CW stirring.

  10. 10.

    Following suggestions from a referee we have halved the cuvettes. Both faces show CD signals which have the same shape as that of the empty cuvette: this enables LD contributions to be excluded.

  11. 11.

    Δ- or Λ-[Ru(Phen)3]2+ are free in solution (10 mm): therefore they can drive a preferential chiral aggregation despite the vortex chirality.

Abbreviations

AuT4:

Au-meso-tetrakis(4-N-methylpyridyl)porphyrin

CCW:

Counter clock wise

CD:

Circular dichroism

cis-DPPS:

5,10-Bis(4-sulfonatophenyl)-15,20-diphenylporphyrin

CuT4:

Cu-meso-tetrakis(4-N-methylpyridyl)porphyrin

CuTPPS:

Cu-meso-tetrakis(4-sulphonatophenyl)porphyrin

CW:

Clock wise

DLS:

Dynamic light scattering

EDXD:

Energy dispersive X-ray diffraction

ELS:

Elastic light scattering

H2T4:

meso-Tetrakis(4-N-methylpyridyl)porphyrin

H2TPPS:

meso-Tetrakis (4-sulphonatophenyl)porphyrin

H2TpyP:

meso-Tetrakis (4-phenyl)porphyrin

ICD:

Induced circular dichroism

LD:

Linear dichroism

MnT4:

Mn-meso-tetrakis(4-N-methylpyridyl)porphyrin

MT4:

meso-Tetrakis(4-N-methylpyridyl)porphyrin metallo derivative

MTPPS:

meso-Tetrakis(4-sulphonatophenyl)porphyrin metallo derivative

Mw:

Molecular weight

Phe:

Phenylalanine

RLS:

Resonance light scattering

Ru[(Phen)3]2+ :

Ru[(phenanthroline)3]2+

trans-DPPS:

5,15-Bis(4-sulfonatophenyl)-10,20-diphenylporphyrin

ZnT4:

Zn-meso-tetrakis(4-N-methylpyridyl)porphyrin

References

  1. Simpson GJ (2004) Molecular origin of the remarkable chiral sensitivity of second-order nonlinear optics. Chem Phys Chem 5:1301–1310

    Article  CAS  Google Scholar 

  2. Purrello R (2003) Lasting chiral memory. Nat Mater 2:216–217

    Article  CAS  Google Scholar 

  3. Mukhopadhyay P, Wipf P, Beratan DN (2009) Optical signatures of molecular dissymmetry: combining theory with experiments to address stereochemical puzzles. Acc Chem Res 42:809–819

    Article  CAS  Google Scholar 

  4. Balaz M, De Napoli M, Holmes AE et al (2005) A cationic zinc porphyrin as a chiroptical probe for Z-DNA. Angew Chem Int Ed Engl 44:4006–4009

    Article  CAS  Google Scholar 

  5. D'Urso A, Mammana A, Balaz M et al (2009) Interactions of a tetra-anionic porphyrin with DNA: from a Z-DNA sensor to a versatile supramolecular device. J Am Chem Soc 131:2046–2047

    Article  Google Scholar 

  6. Onouchi H, Miyagawa T, Morino K et al (2006) Assisted formation of chiral porphyrin homoaggregates by an induced helical poly(phenylacetylene) template and their chiral memory. Angew Chem Int Ed Engl 45:2381–2384

    Article  CAS  Google Scholar 

  7. Jiang S, Zhang L, Liu M (2009) Photo-triggered J-aggregation and chiral symmetry breaking of an anionic porphyrin (TPPS) in mixed organic solvent. Chem Commun 41:6252–6254

    Article  Google Scholar 

  8. Zhang L, Liu M (2009) Supramolecular chirality and chiral inversion of tetraphenylsulfonato porphyrin assemblies on optically active polylysine. J Phys Chem B 113:14015–14020

    Article  CAS  Google Scholar 

  9. Zhao L, Wang X, Li Y et al (2009) Chiral micelles of achiral TPPS and diblock copolymer induced by amino acids. Macromolecules 42:6253–6260

    Article  CAS  Google Scholar 

  10. Micali N, Villari V, Castriciano M et al (2006) From fractal to nanorod porphyrin J-aggregates. Concentration-induced tuning of the aggregate size. J Phys Chem B 110:8289–8295

    Article  CAS  Google Scholar 

  11. Jiang S, Liu M (2004) Aggregation and induced chirality of an anionic meso-tetraphenylsulfonato porphyrin (TPPS) on a layer-by-layer assembled DNA/PAH matrix. J Phys Chem B 108:2880–2884

    Article  CAS  Google Scholar 

  12. Lang K, Anzenbacher P, Kapusta P et al (2000) Long-range assemblies on poly(dG-dC)2 and poly(dA-dT)2: phosphonium cationic porphyrins and the importance of the charge. J Photochem Photobiol B-Biol 57:51–59

    Article  CAS  Google Scholar 

  13. Pasternack RF (2003) Circular dichroism and the interactions of water soluble porphyrins with DNA – a minireview. Chirality 15:329–332

    Article  CAS  Google Scholar 

  14. Palmans ARA, Meijer EW (2007) Amplification of chirality in dynamic supramolecular aggregates. Angew Chem Int Ed Engl 46:2–23

    Article  Google Scholar 

  15. Kubat P, Lang K, Kral V et al (2002) Preprogramming of porphyrin-nucleic acid assemblies via variation of the alkyl/aryl substituents of phosphonium tetratolylporphyrins. J Phys Chem B 106:6784–6792

    Article  CAS  Google Scholar 

  16. Pasternack RF, Gurrieri S, Lauceri R et al (1996) Single-stranded nucleic acids as templates for porphyrin assembly formation. Inorg Chim Acta 246:7–12

    Article  CAS  Google Scholar 

  17. Kuciauskas D, Caputo GA (2009) Self-assembly of peptide–porphyrin complexes leads to pH-dependent excitonic coupling. J Phys Chem B 113:14439–14447

    Article  CAS  Google Scholar 

  18. Kokona B, Kim AM, Roden RC et al (2009) Self assembly of coiled-coil peptide-porphyrin complexes. Biomacromolecules 10:1454–1459

    Article  CAS  Google Scholar 

  19. De Luca G, Romeo A, Monsu Scolaro L et al (2010) Conformations of a model protein revealed by an aggregating CuII porphyrin: sensing the difference. Chem Commun 46:389–391

    Article  Google Scholar 

  20. Monsu Scolaro L, Romeo A, Pasternack RF (2004) Tuning porphyrin/DNA supramolecular assemblies by competitive binding. J Am Chem Soc 126:7178–7179

    Article  Google Scholar 

  21. Pasternack RF, Giannetto A, Pagano P et al (1991) Self-assembly of porphyrins on nucleic acids and polypeptides. J Am Chem Soc 113:7799–7800

    Article  CAS  Google Scholar 

  22. Purrello R, Gurrieri S, Lauceri R (1999) Porphyrin assemblies as chemical sensors. Coord Chem Rev 190–192:683–706

    Article  Google Scholar 

  23. Purrello R, Bellacchio E, Gurrieri S et al (1998) pH modulation of porphyrins self-assembly onto polylysine. J Phys Chem B 102:8852–8857

    Article  CAS  Google Scholar 

  24. Lauceri R, Campagna T, Contino A et al (1996) Poly(A A U) triple helix formation promoted by porphyrin assembly. Angew Chem Int Ed Engl 35:215–216

    Article  CAS  Google Scholar 

  25. Bustamante C, Gurrieri S, Pasternack RF et al (1994) Interaction of water-soluble porphyrins with single- and double-stranded polyribonucleotides. Biopolymers 34:1099–1104

    Article  CAS  Google Scholar 

  26. Purrello R, Monsu Scolaro L, Bellacchio E et al (1998) Chiral H- and J-type aggregates of meso-tetrakis(4-sulfonatophenyl)porphine on α-helical polyglutamic acid induced by cationic porphyrins. Inorg Chem 37:3647–3648

    Article  CAS  Google Scholar 

  27. Fleischer EB, Palmer JM, Srivastava TS et al (1971) Thermodyamic and kinetic properties of an iron-porphyrin system. J Am Chem Soc 93:3162–3167

    Article  CAS  Google Scholar 

  28. Ribo JM, Crusats J, Farrera J-A et al (1994) Aggregation in water solutions of tetrasodium diprotonated meso-tetrakis(4-sulfonatophenyl)porphyrin. J Chem Soc, Chem Commun 6:681–682

    Article  Google Scholar 

  29. Pasternack RF, Schaefer KF, Hambright P (1994) Resonance light-scattering studies of porphyrin diacid aggregates. Inorg Chem 33:2062–2065

    Article  CAS  Google Scholar 

  30. Shimidzu T, Tomokazu I (1981) Accordion-type aggregate of water-soluble meso-tetraphenylporphyrin derivatives. Chem Lett 10:853–856

    Article  Google Scholar 

  31. Ojadi E, Selzer R, Linschitz H (1985) Properties of porphyrin dimers, formed by pairing cationic and anionic porphyrins. J Am Chem Soc 107:7783–7784

    Article  CAS  Google Scholar 

  32. Hofstra U, Koehorst RBM, Schaafsma TJ (1986) Excited-state properties of water-soluble porphyrin dimmers. Chem Phys Lett 130:555–559

    Article  CAS  Google Scholar 

  33. Endisch E, Fuhrhop J-H, Buschmann J et al (1996) β-Tetraethyl-β′-tetrapyridin-4-yl porphyrins, their N-methylated tetracations, and heterodimers with ms-tetraphenylsulfonato porphyrins. J Am Chem Soc 118:6671–6680

    Article  CAS  Google Scholar 

  34. Mukundam NE, Pethö G, Dixon D et al (1994) Interactions of an electron-rich tetracationic tentacle porphyrin with calf thymus DNA. Inorg Chem 33:4676–4687

    Article  Google Scholar 

  35. Schneider H-J, Wang M (1994) DNA interactions with porphyrins bearing ammonium side chains. J Org Chem 59:7473–7478

    Article  CAS  Google Scholar 

  36. Lauceri R, Gurrieri S, Bellacchio E et al (2000) J-type aggregates of the anionic meso-tetrakis(4-sulfonatophenyl)porphine induced by “hindered” cationic porphyrins. Supramol Chem 12:193–202

    Article  CAS  Google Scholar 

  37. Bellacchio E, Lauceri R, Gurrieri S et al (1998) Template-imprinted chiral porphyrin aggregates. J Am Chem Soc 120:12353–12354

    Article  CAS  Google Scholar 

  38. Purrello R, Raudino A, Monsù Scolaro L et al (2000) Ternary porphyrin aggregates and their chiral memory. J Phys Chem B 104:10900–10908

    Article  CAS  Google Scholar 

  39. Gibbs EJ, Tinoco I, Maestre M et al (1988) Self-assembly of porphyrins on nucleic acid templates. Biochem Biophys Res Commun 157:350–358

    Article  CAS  Google Scholar 

  40. Hunter CA, Sanders JKM (1990) The nature of π-π interactions. J Am Chem Soc 112:5525–5534

    Article  CAS  Google Scholar 

  41. Lauceri R, De Napoli M, Mammana A et al (2004) Hierarchical self-assembly of water-soluble porphyrins. Synth Met 147:49–55

    Article  CAS  Google Scholar 

  42. Mammana A, De Napoli M, Lauceri R et al (2005) Induction and memory of chirality in porphyrin hetero-aggregates: the role of the central metal ion. Bioorg Med Chem 13:5159–5163

    Article  CAS  Google Scholar 

  43. Geremia S, Di Costanzo L, Nardin G et al (2004) Assembly of positively charged porphyrins driven by metal ions: a novel polymeric arrangement of cationic metalloporphyrins. Inorg Chem 43:7579–7581

    Article  CAS  Google Scholar 

  44. Lauceri R, Purrello R (2005) Transfer, memory and amplification of chirality in porphyrin aggregates. Supramol Chem 17:61–66

    Article  CAS  Google Scholar 

  45. Lauceri R, D’urso A, Mammana A et al (2008) Chiral memory: induction, amplification, and switching in porphyrin assemblies. Chirality 20:411–419

    Article  Google Scholar 

  46. Lauceri R, Raudino A, Monsu` Scolaro L et al (2002) From achiral porphyrins to template-imprinted chiral aggregates and further. Self-replication of chiral memory from scratch. J Am Chem Soc 124:894–895

    Article  CAS  Google Scholar 

  47. Lauceri R, Fasciglione GF, D’Urso A et al (2008) Kinetic investigation of porphyrin interaction with chiral templates reveals unexpected features of the induction and self-propagation mechanism of chiral memory. J Am Chem Soc 130:10476–10477

    Article  CAS  Google Scholar 

  48. Matassa R, Carbone M, Lauceri R et al (2007) Supramolecular structure of extrinsically chiral porphyrin hetero-assemblies and achiral analogues. Adv Mater 19:3961–3967

    Article  CAS  Google Scholar 

  49. Mammana A, D’Urso A, Lauceri R et al (2007) Switching off and on the supramolecular chiral memory in porphyrin assemblies. J Am Chem Soc 129:8062–8063

    Article  CAS  Google Scholar 

  50. Randazzo R, Lauceri R, Mammana A et al (2009) Interactions of Λ and Δ enantiomers of ruthenium(II) cationic complexes with achiral anionic porphyrins. Chirality 21:92–96

    Article  CAS  Google Scholar 

  51. Randazzo R, Mammana A, D’Urso A et al (2008) Reversible “chiral memory” in ruthenium tris(phenanthroline)–anionic porphyrin complexes. Angew Chem Int Ed Engl 47:9879–9882

    Article  CAS  Google Scholar 

  52. Balzani V, Juris A (2001) Photochemistry and photophysics of Ru(II)-polypyridine complexes in the Bologna group. From early studies to recent developments. Coord Chem Rev 21:97–115

    Article  Google Scholar 

  53. Castiglioni E, Abbate S, Longhi G et al (2007) Absorption flattening as one cause of distortion of circular dichroism spectra of Δ-[Ru(phen)3]2+-H2TPPS complex. Chirality 19:642–646

    Article  CAS  Google Scholar 

  54. Amabilino DB (2007) Supramolecular assembly: nanofibre whirlpools. Nat Mater 6:924–925

    Article  CAS  Google Scholar 

  55. Kondepudi DK, Kaufman RJ, Singh N (1990) Chiral symmetry breaking in sodium chlorate crystallization. Science 250:975–976

    Article  CAS  Google Scholar 

  56. Ribo JM, Crusats J, Sague F et al (2001) Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 292:2063–2066

    Article  CAS  Google Scholar 

  57. Dzwolak W, Loksztejn A, Galinka-Rakoczj A et al (2007) Conformational indeterminism in protein misfolding: chiral amplification on amyloidogenic pathway of insulin. J Am Chem Soc 129:7517–7522

    Article  CAS  Google Scholar 

  58. Ohno O, Kaizu Y, Kobayashi H (1993) J-aggregate formation of a water-soluble porphyrin in acidic aqueous media. J Chem Phys 99:4128–4139

    Article  CAS  Google Scholar 

  59. Yamaguchi T, Kimura T, Matsuda H et al (2004) Macroscopic spinning chirality memorized in spin-coated films of spatially designed dendritic zinc porphyrin J-aggregates. Angew Chem Int Ed Engl 43:6350–6355

    Article  CAS  Google Scholar 

  60. Tsuda A, Akhtarul Alam Md, Harada T et al (2007) Spectroscopic visualization of vortex flows using dye-containing nanofibers. Angew Chem Int Ed Engl 46:8198–8202

    Article  CAS  Google Scholar 

  61. Wolffs M, George SJ, Tomovic Z et al (2007) Macroscopic origin of CD-effects by alignment of self-assembled fibers in solution. Angew Chem Int Ed Engl 46:8203–8205

    Article  CAS  Google Scholar 

  62. D’Urso A, Randazzo R, Lo Faro L et al (2010) Vortex and nanoscale chirality. Angew Chem Int Ed Engl 49:108–112

    Article  Google Scholar 

  63. Spada GP (2008) Alignment by the convective and vortex flow of achiral self-assembled fibers induces strong circular dichroism effects. Angew Chem Int Ed Engl 47:636–638

    Article  CAS  Google Scholar 

  64. Arteaga O, Canillas A, Purrello R et al (2009) Evidence of induced chirality in stirred solutions of supramolecular nanofibers. Opt Lett 34:2177–2179

    Article  Google Scholar 

  65. Kostur M, Schindler M, Talkner P et al (2006) Chiral separation in microflows. Phys Rev Lett 96:014502-2–4

    Article  Google Scholar 

  66. Pasternack RF, Huber PR, Boyd P et al (1972) Aggregation of meso-substituted water-soluble porphyrins. J Am Chem Soc 94:4511–4517

    Article  CAS  Google Scholar 

  67. Akins DL, Zhu H-R, Guo C (1996) Aggregation of tetraaryl-substituted porphyrins in homogeneous solution. J Phys Chem 100:5420–5425

    Article  CAS  Google Scholar 

  68. Escudero C, Crusat J, Diez-Perez I et al (2006) Folding and hydrodynamic forces in J-aggregates of 5-phenyl-10,15,20-tris(4-sulfophenyl)porphyrin. Angew Chem Int Ed Engl 45:8032–8035

    Article  CAS  Google Scholar 

  69. Berova N, Nakanishi K (2000) In: Berova N, Nakanishi K, Woody RW (eds) Circular Dichroism, Principles and Applications. Wiley-VCH, Weinheim, pp 337–382

    Google Scholar 

  70. El-Hachemi Z, Escudero C, Arteaga O et al (2009) Chiral sign selection on the J-aggregates of diprotonated tetrakis-(4-sulfonatophenyl)porphyrin by traces of unidentified chiral contaminants present in the ultra-pure water used as solvent. Chirality 21:408–412

    Article  CAS  Google Scholar 

  71. Escudero C, El-Hachemi Z, Crusats J et al (2005) Zwitterionic vs porphyrin free-base structures in 4-phenylsulfonic acid meso-substituted porphyrins. J Porphyr Phthalocyanines 9:852–863

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Purrello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lauceri, R., D’Urso, A., Mammana, A., Purrello, R. (2010). Transfer of Chirality for Memory and Separation. In: Naaman, R., Beratan, D., Waldeck, D. (eds) Electronic and Magnetic Properties of Chiral Molecules and Supramolecular Architectures. Topics in Current Chemistry, vol 298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2010_87

Download citation

Publish with us

Policies and ethics