Skip to main content

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 298))

Abstract

In this chapter, new developments and main applications of vibrational circular dichroism (VCD) spectroscopy reported in the last 5 years are described. This includes the determinations of absolute configurations of chiral molecules, understanding solvent effects and modeling solvent–solute explicit hydrogen bonding networks using induced solvent chirality, studies of transition metal complexes and their peculiar and enormous intensity enhancements in VCD spectra, investigations of conformational preference of chiral ligands bound to gold nano particles, and two new advances in applying matrix isolation VCD spectroscopy to flexible, multi-conformational chiral molecules and complexes, and in development of femtosecond laser based VCD instruments for transient VCD monitoring. A brief review of the experimental techniques and theoretical methods is also given. The purpose of this chapter is to provide an up-to-date perspective on the capability of VCD to solve significant problems about chiral molecules in solution, in thin film states, or on surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barron LD (2004) Molecular light scattering and optical activity, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  2. Polavarapu PL (1998) Vibrational spectra: principles and applications with emphasis on optical activity. Elsevier, New York

    Google Scholar 

  3. Holzwarth G, Hsu EC, Mosher HS et al (1974) Infrared circular dichroism of carbon-hydrogen and carbon-deuterium stretching modes. J Am Chem Soc 96:251–252

    CAS  Google Scholar 

  4. Nafie LA, Cheng JC, Stephens PJ (1975) Vibrational circular dichroism of 2,2,2-trifluoro-1-phenylethanol. J Am Chem Soc 97:3842–3843

    CAS  Google Scholar 

  5. Galwas PA (1983) On the distribution of optical polarization in molecules. PhD Thesis, University of Cambridge, Cambridge

    Google Scholar 

  6. Buckingham AD, Fowler PW, Galwas PA (1987) Velocity-dependent property surfaces and the theory of vibrational circular-dichroism. Chem Phys 112:1–14

    CAS  Google Scholar 

  7. Stephens PJ (1985) Theory of vibrational circular-dichroism. J Phys Chem 89:748–752

    CAS  Google Scholar 

  8. Stephens PJ, Lowe MA (1985) Vibrational circular-dichroism. Annu Rev Phys Chem 36:213–241

    CAS  Google Scholar 

  9. Stephens PJ (1987) Gauge dependence of vibrational magnetic dipole transition moments and rotational strengths. J Phys Chem 91:1712–1715

    CAS  Google Scholar 

  10. Nafie LA (1983) Adiabatic molecular-properties beyond the Born-Oppenheimer approximation – complete adiabatic wave-functions and vibrationally induced electronic current-density. J Chem Phys 79:4950–4957

    CAS  Google Scholar 

  11. Nafie LA (1992) Velocity-gauge formalism in the theory of vibrational circular-dichroism and infrared-absorption. J Chem Phys 96:5687–5702

    CAS  Google Scholar 

  12. Nafie LA (1997) Electron transition current density in molecules.1. Non-Born-Oppenheimer theory of vibronic and vibrational transitions. J Phys Chem A 101:7826–7833

    CAS  Google Scholar 

  13. Freedman TB, Shih M-L, Lee E et al (1997) Ab initio calculations for vibrational transitions in ethylene and formaldehyde. J Am Chem Soc 119:10620–10626

    CAS  Google Scholar 

  14. Stephens PJ, Devlin FJ (2000) Determination of the structure of chiral molecules using ab initio vibrational circular dichroism spectroscopy. Chirality 12:172–179

    CAS  Google Scholar 

  15. Polavarapu PL (2006) Quantum mechanical predictions of chiroptical vibrational properties. Int J Quantum Chem 106:1809–1814

    CAS  Google Scholar 

  16. Freedman TB, Cao XL, Dukor RK et al (2003) Absolute configuration determination of chiral molecules in the solution state using vibrational circular dichroism. Chirality 15:743–758

    CAS  Google Scholar 

  17. Polavarapu PL, He J (2004) Chiral analysis using mid-IR vibrational CD spectroscopy. Anal Chem 76:61A–67A

    CAS  Google Scholar 

  18. Polavarapu PL (2007) Renaissance in chiroptical spectroscopic methods for molecular structure determination. Chem Rec 7:125–136

    CAS  Google Scholar 

  19. Stephens PJ, Devlin FJ, Pan JJ (2008) The determination of the absolute configurations of chiral molecules using vibrational circular dichroism (VCD) spectroscopy. Chirality 20:643–663

    CAS  Google Scholar 

  20. Stephens PJ, Devlin FJ, Aamouche A (2002) Determination of the structures of chiral molecules using vibrational circular dichroism spectroscopy. In: Hicks JM (ed) Chirality: physical chemistry. ACS Symposium Series, vol. 810, Chap. 2, Oxford University Press, New York, pp 18–33

    Google Scholar 

  21. Yang GC, Ha T, Fan E et al (2010) Determination of the absolute configurations of synthetic daunorubicin analogues using vibrational circular dichroism spectroscopy and density functional theory. Chirality 22:734–743

    Google Scholar 

  22. Yang GC, Xu Y, Hou JB et al (2010) Determination of the absolute configuration of pentacoordinate chiral phosphorus compounds in solution by using vibrational circular dichroism spectroscopy and density functional theory. Chem Eur J 16:2518–2527

    CAS  Google Scholar 

  23. Sato H, Mori Y, Fukuda Y (2009) Syntheses and vibrational circular dichroism spectra of the complete series of [Ru((−)- or (+)-tfac)n(acac)3-n] (n=0∼3, tfac=3-trifluoroacetylcamphorato and acac=acetylacetonato). Inorg Chem 48:4354–4361

    CAS  Google Scholar 

  24. Nafie LA (2008) Vibrational circular dichroism: a new tool for the solution-state determination of the structure and absolute configuration of chiral natural product molecules. Nat Prod Commun 3:451–466

    CAS  Google Scholar 

  25. Brotin T, Cavagnat D, Dutasta JP et al (2006) Vibrational circular dichroism study of optically pure cryptophane-A. J Am Chem Soc 128:5533–5540

    CAS  Google Scholar 

  26. Devlin FJ, Stephens PJ, Besse P (2005) Are the absolute configurations of 2-(1-hydroxyethyl)-chromen-4-one and its 6-bromo derivative determined by X-ray crystallography correct? A vibrational circular dichroism study of their acetate derivatives. Tetrahedron Asymmetry 16:1557–1566

    CAS  Google Scholar 

  27. Nafie LA (2004) New approaches to the determination of absolute configuration for Chiral Pharmaceuticals (Business Briefing – PharmaTech)

    Google Scholar 

  28. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structure. Springer-Verlag, Berlin

    Google Scholar 

  29. Nafie LA, Keiderling TA, Stephens PJ (1976) Vibrational circular-dichroism. J Am Chem Soc 98:2715–2723

    CAS  Google Scholar 

  30. Nafie LA (1988) Polarization modulation FTIR spectroscopy. In: Mackenzie MW (ed) Advances in applied FTIR spectroscopy. Wiley, New York, pp 67–104

    Google Scholar 

  31. Nafie LA, Long F, Freedman TB et al (1998) The determination of enantiomeric purity and absolute configuration by vibrational circular dichroism spectroscopy. In: de Haseth JA (ed) Fourier transform spectroscopy: 11th International Conference, vol. 430, American Institute of Physics. Woodbury, New York, pp 432–434

    Google Scholar 

  32. Dukor RK, Nafie LA (2000) Vibrational optical activity of pharmaceuticals and biomolecules. In: Meyers RA (ed) Encyclopaedia of analytical chemistry: instrumentation and applications. Wiley, Chichester, UK, pp 662–676

    Google Scholar 

  33. Nafie LA, Diem M (1979) Theory of high-frequency differential interferometry – application to the measurement of infrared circular and linear dichroism via Fourier-transform spectroscopy. Appl Spectrosc 33:130–135

    CAS  Google Scholar 

  34. Nafie LA, Diem M, Vidrine DW (1979) Fourier-transform infrared vibrational circular-dichroism. J Am Chem Soc 101:496–498

    CAS  Google Scholar 

  35. Lipp ED, Zimba CG, Nafie LA (1982) Vibrational circular-dichroism in the mid-infrared using Fourier-transform spectroscopy. Chem Phys Lett 90:1–5

    CAS  Google Scholar 

  36. Nafie LA (2000) Dual polarization modulation: a real-time, spectral-multiplex separation of circular dichroism from linear birefringence spectral intensities. Appl Spectrosc 54:1634–1645

    CAS  Google Scholar 

  37. Malon P, Keiderling TA (1988) A solution to the artifact problem in Fourier-transform vibrational circular-dichroism. Appl Spectrosc 42:32–38

    CAS  Google Scholar 

  38. Polavarapu PL (1989) New developments in Fourier-transform infrared vibrational circular-dichroism measurements. Appl Spectrosc 43:1295–1297

    CAS  Google Scholar 

  39. Malon P, Keiderling TA (1996) Spinning quarter-wave plate polarization modulator: test of feasibility for vibrational circular dichroism measurements. Appl Spectrosc 50:669–674

    CAS  Google Scholar 

  40. Malon P, Keiderling TA (1997) Theoretical simulation of a polarization modulator based on mechanical rotation of a polarizing element. Appl Opt 36:6141–6148

    Google Scholar 

  41. Cao XL, Dukor RK, Nafie LA (2008) Reduction of linear birefringence in vibrational circular dichroism measurement: use of a rotating half-wave plate. Theor Chem Acc 119:69–79

    CAS  Google Scholar 

  42. Hug W (2003) Virtual enantiomers as the solution of optical activity's deterministic offset problem. Appl Spectrosc 57:1–13

    CAS  Google Scholar 

  43. Nafie LA, Buijs H, Rilling A et al (2004) Dual source Fourier transform polarization modulation spectroscopy: an improved method for the measurement of circular and linear dichroism. Appl Spectrosc 58:647–654

    CAS  Google Scholar 

  44. Cao X, Shah RD, Dukor RK et al (2004) Extension of Fourier transform vibrational circular dichroism into the near-infrared region: continuous spectral coverage from 800 to 10 000 cm(−1). Appl Spectrosc 58:1057–1064

    CAS  Google Scholar 

  45. Guo C, Shah RD, Dukor RK et al (2006) Fourier transform vibrational circular dichroism from 800 to 10000 cm(−1): near-IR-VCD spectral standards for terpenes and related molecules. Vib Spectrosc 42:254–272

    CAS  Google Scholar 

  46. Keiderling TA, Kubelka J, Hilario J (2006) Contribution of transition dipole coupling to amide coupling in IR spectra of peptide secondary structures. Vibrational Spectroscopy of Biological and Polymer Materials 253–324

    Google Scholar 

  47. Lakhani A, Malon P, Keiderling TA (2009) Appl Spectrosc 63:755–785

    Google Scholar 

  48. Losada M, Xu Y (2007) Chirality transfer through hydrogen-bonding: experimental and ab initio analyses of vibrational circular dichroism spectra of methyl lactate in water. Phys Chem Chem Phys 9:3127–3135

    CAS  Google Scholar 

  49. Bose PK, Polavarapu PL (1999) Vibrational circular dichroism is a sensitive probe of the glycosidic linkage: oligosaccharides of glucose. J Am Chem Soc 121:6094–6095

    CAS  Google Scholar 

  50. Shanmugam G, Polavarapu PL (2004) Structure of A beta (25-35) peptide in different environments. Biophys J 87:622–630

    CAS  Google Scholar 

  51. Shanmugam G, Polavarapu PL, Gopinath D, Jayakumar R (2005) The structure of antimicrobial pexiganan peptide in solution probed by Fourier transform infrared absorption, vibrational circular dichroism, and electronic circular dichroism spectroscopy. Biopolymers 80:636–642

    CAS  Google Scholar 

  52. Shanmugam G, Polavarapu PL (2004) Vibrational circular dichroism spectra of protein films: thermal denaturation of bovine serum albumin. Biophys Chem 111:73–77

    CAS  Google Scholar 

  53. Shanmugam G, Polavarapu PL (2005) Film techniques for vibrational circular dichroism measurements. Appl Spectrosc 59:673–681

    CAS  Google Scholar 

  54. Petrovic AG, Bose PK, Polavarapu PL (2004) Vibrational circular dichroism of carbohydrate films formed from aqueous solutions. Carbohydr Res 339:2713–2720

    CAS  Google Scholar 

  55. Petrovic AG, Polavarapu PL (2005) Structural transitions in polyriboadenylic acid induced by the changes in pH and temperature: vibrational circular dichroism study in solution and film states. J Phys Chem B 109:23698–23705

    CAS  Google Scholar 

  56. Shanmugam G, Polavarapu PL, Kendall LA et al (2005) Structures of plant viruses from vibrational circular dichroism. J Gen Virol 86:2377–2384

    Google Scholar 

  57. Haraday T, Kuroday R (2002) Circular dichroism measurement of a protein in dried thin films. Chem Lett 326–327

    Google Scholar 

  58. Merten C, Kowalik T, Hartwig A (2008) Vibrational circular dichroism spectroscopy of solid polymer films: effects of sample orientation. Appl Spectrosc 62:901–905

    CAS  Google Scholar 

  59. Buffeteau T, Lagugné-Labarthet F, Sourisseau C (2005) Vibrational circular dichroism in general anisotropic thin solid films: measurement and theoretical approach. Appl Spectrosc 59:732–745

    CAS  Google Scholar 

  60. Cohan NV, Hameka HF (1966) Isotope effects in optical rotation. J Am Chem Soc 88:2136–2142

    CAS  Google Scholar 

  61. Faulkner TR, Marcott C, Moscowitz A et al (1977) Anharmonic effects in vibrational circular-dichroism. J Am Chem Soc 99:8160–8168

    CAS  Google Scholar 

  62. Nafie LA, Walnut TH (1977) Vibrational circular-dichroism theory – localized molecular-orbital model. Chem Phys Lett 49:441–446

    CAS  Google Scholar 

  63. Walnut TH, Nafie LA (1977) IR absorption and born-oppenheimer approximation. 2. Vibrational circular-dichroism. J Chem Phys 67:1501–1510

    CAS  Google Scholar 

  64. Nafie LA, Freedman TB (1983) Vibronic coupling theory of infrared vibrational transitions. J Phys Chem 78:7108–7116

    CAS  Google Scholar 

  65. Dutler R, Rauk A (1989) Calculated infrared-absorption and vibrational circular-dichroism intensities of oxirane and its deuterated analogs. J Am Chem Soc 111:6957–6966

    CAS  Google Scholar 

  66. Yang D, Rauk A (1992) Vibrational circular dichroism intensities: ab initio vibronic coupling theory using the distributed origin gauge. J Chem Phys 97:6517–6534

    CAS  Google Scholar 

  67. Hunt KLC, Harris RA (1991) Vibrational circular-dichroism and electric-field shielding tensors – a new physical interpretation based on nonlocal susceptibility densities. J Chem Phys 94:6995–7002

    CAS  Google Scholar 

  68. Lazzeretti P, Malagoli M, Zanasi R (1991) Electromagnetic moments and fields induced by nuclear vibrational motion in molecules. Chem Phys Lett 179:297–302

    CAS  Google Scholar 

  69. Hansen AE, Stephens PJ, Bouman TD (1991) Theory of vibrational circular-dichroism – formalisms for atomic polar and axial tensors using noncanonical orbitals. J Phys Chem 95:4255–4262

    CAS  Google Scholar 

  70. Amos RD (1984) Dipole-moment derivatives of H2O and H2S. Chem Phys Lett 108:185–190

    CAS  Google Scholar 

  71. Yamaguchi Y, Frisch M, Gaw J et al (1986) Analytic evaluation and basis set dependence of intensities of infrared-spectra. J Chem Phys 84:2262–2278

    CAS  Google Scholar 

  72. Cheeseman JR, Frisch MJ, Devlin FJ et al (1996) Ab initio calculation of atomic axial tensors and vibrational rotational strengths using density functional theory. Chem Phys Lett 252:211–220

    CAS  Google Scholar 

  73. Nicu VP, Neugebauer J, Baerends EJ (2008) Effects of complex formation on vibrational circular dichroism spectra. J Phys Chem A 112:6978–6991

    CAS  Google Scholar 

  74. Nicu VP, Baerends EJ (2009) Robust normal modes in vibrational circular dichroism spectra. Phys Chem Chem Phys 11:6107–6118

    CAS  Google Scholar 

  75. Cichewicz RH, Clifford LJ, Lassen PR, Cao X, Freedman TB, Nafie LA, Deschamps JD, Kenyon VA, Flanary JR, Holman TR, Crews P (2005) Stereochemical determination and bioactivity assessment of (S)-(1)-curcuphenol dimers isolated from the marine sponge Didiscus aceratus and synthesized through laccase biocatalysis. Bioorg Med Chem 13:5600–5612

    CAS  Google Scholar 

  76. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD,Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03 C02

    Google Scholar 

  77. Kuppens T, Langenaeker W, Tollenaere JP et al (2003) Determination of the stereochemistry of 3-hydroxymethyl-2, 3-dihydro-[1, 4]dioxino[2, 3-b]pyridine by vibrational circular dichroism and the effect of DFT integration grids. J Phys Chem A 107:542–553

    CAS  Google Scholar 

  78. Pacios LF, Galvez O, Gomez PC (2005) Variation of geometries and electron properties along proton transfer in strong hydrogen-bond complexes. J Chem Phys 122:214307

    CAS  Google Scholar 

  79. Sadlej J, Dobrowolski JC, Rode JE et al (2006) DFT study of vibrational circular dichroism spectra of D-lactic acid-water complexes. Phys Chem Chem Phys 8:101–113

    CAS  Google Scholar 

  80. Pathak AK, Mukherjee T, Maity DK (2007) Structure, energy, and IR spectra of I-2(center dot-).nH(2)O clusters (n=1-8): a theoretical study. J Chem Phys 126:034301

    CAS  Google Scholar 

  81. Nibu Y, Marui R, Shimada H (2006) IR spectroscopy of hydrogen-bonded 2-fluoropyridine-methanol clusters. J Phys Chem A 110:12597–12602

    CAS  Google Scholar 

  82. Boys SF, Bernardi F (1970) Calculation of small molecular interactions by differences of separate total energies – some procedures with reduced errors. Mol Phys 10:553–559

    Google Scholar 

  83. Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 9:5648–5652

    Google Scholar 

  84. Lee CT, Yang WT, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B Condens Matter 37:785–789

    CAS  Google Scholar 

  85. Stephens PJ, Devlin FJ, Chabalowski CF et al (1994) Ab-initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields. J Phys Chem 98:11623–11627

    CAS  Google Scholar 

  86. Kuppens T, Herrebout W, van der Veken B et al (2006) Intermolecular association of tetrahydrofuran-2-carboxylic acid in solution: a vibrational circular dichroism study. J Phys Chem A 110:10191–10200

    CAS  Google Scholar 

  87. Sander W, Gantenberg M (2005) Aggregation of acetic and propionic acid in argon matrices – a matrix isolation and computational study. Spectrochim Acta A 62:902–909

    Google Scholar 

  88. Chandra AK, Parveen S, Zeegers-Huyskens T (2007) Anomeric effects in the symmetrical and asymmetrical structures of triethylamine. Blue-shifts of the C-H stretching vibrations in complexed and protonated triethylamine. J Phys Chem A 111:8884–8891

    CAS  Google Scholar 

  89. Demyanov PI, Gschwind RM (2006) Formation of hydrogen bonds in complexes between dimethylcuprate(I) anion and methane, propane, or dimethyl ether. A theoretical study. Organometallics 25:5709–5723

    CAS  Google Scholar 

  90. Scharge T, Emmeluth C, Häber T et al (2006) Competing hydrogen bond topologies in 2-fluoroethanol dimer. J Mol Struct 786:86–95

    CAS  Google Scholar 

  91. Borho N, Xu YJ (2007) Molecular recognition in 1:1 hydrogen-bonded complexes of oxirane and trans-2, 3-dimethyloxirane with ethanol: a rotational spectroscopic and ab initio study. Phys Chem Chem Phys 9:4514–4520

    CAS  Google Scholar 

  92. Krishnan R, Brinkley JS, Seeger R et al (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    CAS  Google Scholar 

  93. Tomasi J, Persico M (1994) Molecular-interactions in solution – an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094

    CAS  Google Scholar 

  94. Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041

    Google Scholar 

  95. Cramer C, Truhlar D (1999) Implicit solvation models: equilibria, structure, spectra, and dynamics. Chem Rev 99:2161–2200

    CAS  Google Scholar 

  96. Klamt A, Schueuermann G (1993) COSMO – a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2 5:799–805

    Google Scholar 

  97. Klamt A (1999) In: Schleyer P v R (ed) The encyclopedia of computational chemistry. Wiley, Chichester

    Google Scholar 

  98. Polavarapu PL (2008) Why is it important to simultaneously use more than one chiroptical spectroscopic method for determinating the structures of chiral molecules? Chirality 20:664–672

    CAS  Google Scholar 

  99. Kirk JM (1960) The mode of action of actinomycin D. Biochim Biophys Acta 42:167–169

    CAS  Google Scholar 

  100. Di Marco A, Gaetani OP, Scarpinato BM et al (1964) Daunomycin: a new antibiotic of the rhodomycin group. Nature 201:706–707

    Google Scholar 

  101. Fan E, Shi W, Lowary TL (2007) Synthesis of daunorubicin analogues containing truncated aromatic cores and unnatural monosaccharide residues. J Org Chem 72:2917–2928

    CAS  Google Scholar 

  102. Corbridge DEC (2000) Phosphorus, chemistry, biochemistry and technology, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  103. Westheimer FH (1968) Pseudo-rotation in the hydrolysis of phosphate esters. Acc Chem Res 1:70–78

    CAS  Google Scholar 

  104. Buchwald SL, Pliura DH, Knowla JR (1980) Stereochemical evidence for pseudorotation in the reaction of a phosphoric monoester. J Am Chem Soc 106:4916–4922

    Google Scholar 

  105. Knowles JR (1980) Enzyme-catalyzed phosphoryl transfer-reactions. Annu Rev Biochem 49:877–919

    CAS  Google Scholar 

  106. Vanool PJJM, Buck HM (1984) Trigonal bipyramidal phosphoranes as model compounds for the description of camp-catalyzed reactions. Trau Chi Pays-Bas 103:119–122

    CAS  Google Scholar 

  107. Holmes RR (1980) Pentacoordinated phosphorus, vol. 11. American Chemical Society, Washington, DC, p 87

    Google Scholar 

  108. Holmes RR (2004) Phosphoryl transfer enzymes and hypervalent phosphorus chemistry. Acc Chem Res 37:746–753

    CAS  Google Scholar 

  109. Holmes RR (1998) Hexacoordinate phosphorus via donor interaction. Implications regarding enzymatic reaction intermediates. Acc Chem Res 31:535–542

    CAS  Google Scholar 

  110. Fu H, Li ZL, Zhao YF et al (1999) Oligomerization of N,O-bis(trimethylsilyl)-alpha-amino acids into peptides mediated by o-phenylene phosphorochloridate. J Am Chem Soc 121:291–295

    CAS  Google Scholar 

  111. Lahiri SD, Zhang GF, Dunaway-Mariano D et al (2003) The pentacovalent phosphorus intermediate of a phosphoryl transfer reaction. Science 299:2067–2071

    CAS  Google Scholar 

  112. Leiros I, McSweeney S, Hough E (2004) The reaction mechanism of phospholipase D from Streptomyces sp strain PMF. snapshots along the reaction pathway reveal a pentacoordinate reaction intermediate and an unexpected final product. J Mol Biol 339:805–820

    CAS  Google Scholar 

  113. Williams NH (2004) Models for biological phosphoryl transfer. Biochim Biophys Acta 1697:279–287

    CAS  Google Scholar 

  114. Cleland WW, Hengge AC (2006) Enzymatic mechanisms of phosphate and sulfate transfer. Chem Rev 106:3252–3278

    CAS  Google Scholar 

  115. Wittinghofer A (2006) Phosphoryl transfer in Ras proteins, conclusive or elusive? Trends Biochem Sci 31:20–23

    CAS  Google Scholar 

  116. Catrina I, O'Brien PJ, Purcell J et al (2007) Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction. J Am Chem Soc 129:5760–5765

    CAS  Google Scholar 

  117. Fu H, Xu JH, Wang RJ et al (2003) Synthesis, crystal structure, and diastereomeric transfer of pentacoordinated phosphoranes containing valine or iso-leucine residue. Phosphorus Sulfur Silicon Relat Elem 178:1963–1971

    CAS  Google Scholar 

  118. Timosheva NV, Chandrasekaran A, Holmes RR (2005) Atrane and phosphorane formation with aminotriphenols [1]. J Am Chem Soc 127:12474–12475

    CAS  Google Scholar 

  119. Hou JB, Tang G, Guo JN et al (2009) Stereochemistry of chiral pentacoordinate spirophosphoranes correlated with solid-state circular dichroism and H-1 NMR spectroscopy. Tetrahedron Asymmetry 20:1301–1307

    CAS  Google Scholar 

  120. Ball P (1999) H2O: a biography of water. Weidenfeld & Nicolson, London

    Google Scholar 

  121. Yves M (2007) The hydrogen bond and the water molecule. Elsevier, New York

    Google Scholar 

  122. Hobza P, Zahradnik R (1988) Intermolecular interactions between medium-sized systems – nonempirical and empirical calculations of interaction energies – successes and failures. Chem Rev 88:871–897

    CAS  Google Scholar 

  123. Curtiss LA, Blander M (1988) Thermodynamic properties of gas-phase hydrogen-bonded complexes. Chem Rev 88:827–841

    CAS  Google Scholar 

  124. Ruan CY, Lobastov VA, Vigliotti F et al (2004) Ultrafast electron crystallography of interfacial water. Science 304:80–84

    CAS  Google Scholar 

  125. Wernet P, Nordlund D, Bergmann U et al (2004) The structure of the first coordination shell in liquid water. Science 304:995–999

    CAS  Google Scholar 

  126. Smith JD, Cappa CD, Wilson KR et al (2004) Energetics of hydrogen bond network rearrangements in liquid water. Science 304:851–853

    Google Scholar 

  127. Bukowski R, Szalewicz K, Groenenboom GC et al (2007) Predictions of the properties of water from first principles. Science 315:1249–1252

    CAS  Google Scholar 

  128. Jalkanen K, Suhai S (1996) N-Acetyl-L-alanine N′-methylamide: a density functional analysis of the vibrational absorption and vibrational circular dichroism spectra. Chem Phys 208:81–116

    CAS  Google Scholar 

  129. Jurgensen VW, Jalkanen K (2006) The VA, VCD, Raman and ROA spectra of tri-L-serine in aqueous solution. Phys Biol 3:S63–S69

    CAS  Google Scholar 

  130. Losada M, Tran H, Xu Y (2008) Lactic acid in solution: investigations of lactic acid self-aggregation and hydrogen bonding interactions with water and methanol using VA and VCD spectroscopy. J Chem Phys 128:014508

    Google Scholar 

  131. Losada M, Nguyen P, Xu Y (2008) Solvation of propylene oxide in water: vibrational circular dichroism, optical rotation, and computer simulation studies. J Phys Chem A 112:5621–5627

    CAS  Google Scholar 

  132. Yang GC, Xu Y (2009) Probing chiral solute-water hydrogen bonding networks by chirality transfer effects: a vibrational circular dichroism study of glycidol in water. J Chem Phys 130:164506

    Google Scholar 

  133. Guardia E, Marti J, Garcia-Tarres L et al (2005) A molecular dynamics simulation study of hydrogen bonding in aqueous ionic solutions. J Mol Liq 117:63–67

    CAS  Google Scholar 

  134. Kongsted J, Mennucci B (2007) How to model solvent effects on molecular properties using quantum chemistry? Insights from polarizable discrete or continuum solvation models. J Phys Chem A 111:9890–9900

    CAS  Google Scholar 

  135. Mukhopadhyay P, Zuber G, Goldsmith MR et al (2006) Solvent effect on optical rotation: a case study of methyloxirane in water. Chemphyschem 7:2483–2486

    CAS  Google Scholar 

  136. Malaspina T, Fileti EE, Rivelino R (2007) Structure and UV–vis spectrum of c60 fullerene in ethanol: a sequential molecular dynamics/quantum mechanics study. J Phys Chem B 111:11935–11939

    CAS  Google Scholar 

  137. Case DA, Darden TA, Cheatham TE et al (2006) AMBER 9. University of California, San Francisco, CA

    Google Scholar 

  138. Jorgensen WL, Jenson C (1998) Temperature dependence of TIP3P, SPC, and TIP4P water from NPT Monte Carlo simulations: seeking temperatures of maximum density. J Comput Chem 19:1179–1186

    CAS  Google Scholar 

  139. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    CAS  Google Scholar 

  140. Yang GC, Xu Y (2008) The effects of self-aggregation on the vibrational circular dichroism and optical rotation measurements of glycidol. Phys Chem Chem Phys 10:6787–6795

    CAS  Google Scholar 

  141. Cj B, Drake AF, Kuroda R et al (1980) Vibrational electronic interaction in the infrared circular-dichroism spectra of transition-metal complexes. Chem Phys Lett 70:8–10

    Google Scholar 

  142. He YN, Cao XL, Nafie LA et al (2001) Ab initio VCD calculation of a transition-metal containing molecule and a new intensity enhancement mechanism for VCD. J Am Chem Soc 123:11320–11321

    CAS  Google Scholar 

  143. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866–1878

    CAS  Google Scholar 

  144. Nafie LA (2004) Theory of vibrational circular dichroism and infrared absorption: extension to molecules with low-lying excited electronic states. J Phys Chem A 108:7222–7231

    CAS  Google Scholar 

  145. Sato H, Taniguchi T, Monde K, Nishimura S-I, Yamagishi A (2006) Dramatic effects of d-electron configurations on vibrational circular dichroism spectra of tris(acetylacetonato)metal(III). Chem Lett 35:364–365

    CAS  Google Scholar 

  146. Sato H, Taniguchi K, Nakahashi A, Monde K, Yamagishi A (2007) Effects of central metal ions on vibrational circular dichroism spectra of tris-(â-diketonato)metal(III) complexes. Inorg Chem 46:6755–6766

    CAS  Google Scholar 

  147. Nicu VP, Autschbach J, Baerends EJ (2009) Enhancement of IR and VCD intensities due to charge transfer. Phys Chem Chem Phys 11:1526–1538

    CAS  Google Scholar 

  148. Young DA, Freedman TB, Lipp ED et al (1986) Vibrational circular-dichroism in transition-metal complexes. 2. Ion association, ring conformation, and ring currents of ethylenediamine ligands. J Am Chem Soc 108:7255–7263

    CAS  Google Scholar 

  149. Freedman TB, Cao XL, Young DA et al (2002) Density functional theory calculations of vibrational circular dichroism in transition metal complexes: Identification of solution conformations and mode of chloride ion association for (+)-tris(ethylenediaminato)cobalt(III). J Phys Chem A 106:3560–3565

    CAS  Google Scholar 

  150. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    CAS  Google Scholar 

  151. Humblot V, Haq S, Muryn C et al (2002) From local adsorption stresses to chiral surfaces: (R,R)-tartaric acid on Ni(110). J Am Chem Soc 124:503–510

    CAS  Google Scholar 

  152. Hofer WA, Humblot V, Raval R (2004) Conveying chirality onto the electronic structure of achiral metals: (R,R)-tartaric acid on nickel. Surf Sci 554:141–149

    CAS  Google Scholar 

  153. López-Lozano X, Pérez LA, Garzón IL (2006) Enantiospecific adsorption of chiral molecules on chiral gold clusters. Phys Rev Lett 97:233401

    Google Scholar 

  154. Gautier C, Bürgi T (2005) Vibrational circular dichroism of N-acetyl-L-cysteine protected gold nanoparticles. Chem Commun 5393–5395

    Google Scholar 

  155. Gautier C, Bürgi T (2006) Chiral N-isobutyryl-cysteine protected gold nanoparticles: preparation, size selection, and optical activity in the UV-vis and infrared. J Am Chem Soc 128:11079–11087

    CAS  Google Scholar 

  156. Gautier C, Bürgi T (2010) Vibrational circular dichroism of adsorbed molecules: binas on gold nanoparticles. J Phys Chem C. doi:10.1021/jp910800m

    Google Scholar 

  157. Gautier C, Taras R, Gladiali S et al (2008) Chiral 1,1′-binaphthyl-2,2′-dithiol-stabilized gold clusters: size separation and optical activity in the UV-vis. Chirality 20:486–493

    CAS  Google Scholar 

  158. Bürgi T, Bieri M (2004) Time-resolved in situ ATR Spectroscopy of 2-propanol oxidation over Pd/Al2O3: evidence for 2-propoxide intermediate. J Phys Chem B 108:13364–13369

    Google Scholar 

  159. Neurock M (1999) First-principles analysis of the hydrogenation of carbon monoxide over palladium. Top Catal 9:135–152

    CAS  Google Scholar 

  160. Schlosser DW, Devlin F, Jalkanen K et al (1982) Vibrational circular-dichroism of matrix-isolated molecules. Chem Phys Lett 88:286–291

    CAS  Google Scholar 

  161. Polavarapu PL, Hess BA, Schaad LJ (1985) Vibrational-spectra of epoxypropane. J Phys Chem 82:1705–1710

    CAS  Google Scholar 

  162. Lowe MA, Alper JS, Kawiecki R et al (1986) Scaled abinitio force-fields for ethylene-oxide and propylene-oxide. J Phys Chem 90:41–50

    CAS  Google Scholar 

  163. Tarczay G, Magyarfalvi G, Vass E (2006) Towards the determination of the absolute configuration of complex molecular systems: matrix isolation vibrational circular dichroism study of (R)-2-amino-1-propanol. Angew Chem Int Ed 45:1775–1777

    CAS  Google Scholar 

  164. Qu X, Citra M, Ragunathan N et al (1993) Proceedings of the 9th International Conference on Fourier Transform Spectroscopy (SPIE vol. 2089, p 142)

    Google Scholar 

  165. Fausto R, Cacela C, Duarte ML (2000) Vibrational analysis and structural implications of H-bonding in isolated and aggregated 2-amino-1-propanol: a study by MI-IR and Raman spectroscopy and molecular orbital calculations. J Mol Struct 550–551:365–388

    Google Scholar 

  166. Pohl G, Perczel A, Vass E et al (2007) A matrix isolation study on Ac-Gly-NHMe and Ac-L-Ala-NHMe, the simplest chiral and achiral building blocks of peptides and proteins. Phys Chem Chem Phys 9:4698–4708

    CAS  Google Scholar 

  167. Pohl G, Perczel A, Vass E et al (2008) A matrix isolation study on Ac-L-Pro-NH2: a frequent structural element of beta- and gamma-turns of peptides and proteins. Tetrahedron 64:2126–2133

    CAS  Google Scholar 

  168. Tarczay G, Gobi S, Vass E et al (2009) Model peptide-water complexes in Ar matrix: complexation induced conformation change and chirality transfer. Vib Spectrosc 50:21–28

    CAS  Google Scholar 

  169. Sadlej J, Dobrowolski JC, Rode JE (2010) VCD spectroscopy as a novel probe for chirality transfer in molecular interactions. Chem Soc Rev 39:1478–1488

    Google Scholar 

  170. Muller T, Wiberg KB, Vaccaro PH (2000) Cavity ring-down polarimetry (CRDP): a new scheme for probing circular birefringence and circular dichroism in the gas phase. J Phys Chem 104:5959–5968

    Google Scholar 

  171. Muller T, Wiberg KB, Vaccaro PH et al (2002) Cavity ring-down polarimetry (CRDP): theoretical and experimental characterization. J Opt Soc Am B 19:125–141

    CAS  Google Scholar 

  172. Bonmarin M, Helbing J (2008) A picosecond time-resolved vibrational circular dichroism spectrometer. Optics Lett 33:2086–2088

    Google Scholar 

  173. Xie X, Simon JD (1990) Picosecond time-resolved circular-dichroism study of protein relaxation in myoglobin following photodissociation of CO. J Am Chem Soc 112:7802–7803

    CAS  Google Scholar 

  174. Xie X, Simon JD (1990) Picosecond circular-dichroism spectroscopy – a Jones matrix analysis. J Opt Soc Am B 7:1673–1684

    CAS  Google Scholar 

  175. Xie X, Simon JD (1989) Picosecond time-resolved circular-dichroism spectroscopy – experimental details and applications. Rev Sci Instrum 60:2614–2627

    CAS  Google Scholar 

  176. Rhee H, Ha JH, Jeon SJ et al (2008) Femtosecond spectral interferometry of optical activity: theory. J Chem Phys 129:094507

    Google Scholar 

  177. Rhee H, June YG, Lee JS et al (2008) Femtosecond characterization of vibrational optical activity of chiral molecules. Nature 458:310–313

    Google Scholar 

  178. Rhee H, JuneYG KZH et al (2009) Phase sensitive detection of vibrational optical activity free-induction-decay: vibrational CD and ORD. J Opt Soc Am B 26:1008–1017

    CAS  Google Scholar 

  179. Lepetit L, Cheriaux G, Joffre M (1995) Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J Opt Soc Am B 12:2467–2474

    CAS  Google Scholar 

  180. Fittinghoff DN, Bowie JL, Sweetser JN et al (1996) Measurement of the intensity and phase of ultraweak, ultrashort laser pulses. Opt Lett 21:884–886

    CAS  Google Scholar 

  181. Su Z, Wen Q, Xu Y (2006) Conformational stability of the propylene oxide-water adduct: direct spectroscopic detection of O-H…O hydrogen bonded conformers. J Am Chem Soc 128:6755–6760

    CAS  Google Scholar 

  182. Su Z, Xu Y (2007) Hydration of a chiral molecule: the propylene oxide…(water)2 cluster in the gas phase. Angew Chem Int Ed 46:6163–6166

    CAS  Google Scholar 

  183. Zehnacker A, Suhm MA (2008) Chirality recognition between neutral molecules in the gas phase. Angew Chem Int Ed 47:6970–6992

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Thomas Bürgi and Gyorgy Tarczay for providing the figures in their original publications, Zahra Dezhahang for the structure figures of cobalt complexes. We also thank the University of Alberta, the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, Alberta Ingenuity, and Petro-Canada for funding and the Academic Information and Communication Technology group at the University of Alberta for access to the computing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjie Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yang, G., Xu, Y. (2010). Vibrational Circular Dichroism Spectroscopy of Chiral Molecules. In: Naaman, R., Beratan, D., Waldeck, D. (eds) Electronic and Magnetic Properties of Chiral Molecules and Supramolecular Architectures. Topics in Current Chemistry, vol 298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2010_86

Download citation

Publish with us

Policies and ethics