Skip to main content

3D-Pharmacophore Identification for κ-Opioid Agonists Using Ligand-Based Drug-Design Techniques

  • Chapter
  • First Online:
Chemistry of Opioids

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 299))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

δ/κ:

K i(δ)/K i(κ)

μ/κ:

K i(μ)/K i(κ)

BCG:

Bicyclic guanidine

CCK:

Cholecystokinin

DOR:

δ-Opioid receptor

GPCR:

G-protein-coupled receptor

K i :

Inhibition constant

KOR:

κ-Opioid receptor

MD:

Molecular dynamics

MMFF:

Merck molecular force field

MOR:

μ-Opioid receptor

ORL1:

Opioid receptor-like 1 receptor

pK a :

Negative logarithm of acid dissociation constant

QSAR:

Quantitative structure–activity relationship

SAR:

Structure–activity relationship

References

  1. Kieffer BL (1995) Recent advances in molecular recognition and signal transduction of active peptides: receptors for opioid peptides. Cell Mol Neurobiol 15:615–635

    Article  CAS  Google Scholar 

  2. Dhawan BN, Cesselin F, Raghubir R, Reisine T, Bradley PB, Portoghese PS, Hamon M (1996) International Union of Pharmacology. XII. Classification of opioid receptors. Pharmacol Rev 48:567–592

    CAS  Google Scholar 

  3. Millan MJ (1990) κ-Opioid receptors and analgesia. Trends Pharmacol Sci 11:70–76

    Article  CAS  Google Scholar 

  4. Williams M, Kowaluk EA, Arneric SP (1999) Emerging molecular approaches to pain therapy. J Med Chem 42:1481–1500

    Article  CAS  Google Scholar 

  5. Chavkin C, Goldstein A (1981) Specific receptor for the opioid peptide dynorphin: structure–activity relationships. Proc Natl Acad Sci U S A 78:6543–6547

    Article  CAS  Google Scholar 

  6. Dooley CT, Ny P, Bidlack JM, Houghten RA (1998) Selective ligands for the μ, δ, and κ opioid receptors identified from a single mixture based tetrapeptide positional scanning combinatorial library. J Biol Chem 273:18848–18856

    Article  CAS  Google Scholar 

  7. Przydzial MJ, Pogozheva ID, Bosse KE, Andrews SM, Tharp TA, Traynor JR, Mosberg HI (2005) Roles of residues 3 and 4 in cyclic tetrapeptide ligand recognition by the κ-opioid receptor. J Pept Res 65:333–342

    Article  CAS  Google Scholar 

  8. Houghten RA, Dooley CT, Appel JR (2006) In vitro and direct in vivo testing of mixture-based combinatorial libraries for the identification of highly active and specific opiate ligands. AAPS J 8:E371–E382

    Google Scholar 

  9. Corbett AD, Kosterlitz HW (1986) Bremazocine is an agonist at kappa-opioid receptors and an antagonist at mu-opioid receptors in the guinea-pig myenteric plexus. Br J Pharmacol 89:245–249

    CAS  Google Scholar 

  10. Tamura T, Ogawa J, Taniguchi T, Waki I (1990) Preferential action of eptazocine, a novel analgesic, with opioid receptors in isolated guinea pig ileum and mouse vas deferens preparations. Folia Pharmacol Japon 95:41–46

    Article  CAS  Google Scholar 

  11. Ronsisvalle G, Pasquinucci L, Pappalardo MS, Vittorio F, Fronza G, Romagnoli C, Pistacchio E, Spampinato S, Ferri S (1993) Non-peptide ligands for opioid receptors. Design of κ-specific agonists. J Med Chem 36:1860–1865

    Article  CAS  Google Scholar 

  12. Dortch-Carnes J, Potter DE (2005) Bremazocine: a κ-opioid agonist with potent analgesic and other pharmacologic properties. CNS Drug Rev 11:195–212

    Article  CAS  Google Scholar 

  13. Pasquinucci L, Iadanza M, Marrazzo A, Prezzavento O, Ronsisvalle S, Scoto GM, Parenti C, De Luca L, Ronsisvalle G (2007) New benzomorphan derivatives of MPCB as MOP and KOP receptor ligands. Pharmazie 62:813–824

    CAS  Google Scholar 

  14. Kawai K, Hayakawa J, Miyamoto T, Imamura Y, Yamane S, Wakita H, Fujii H, Kawamura K, Matsuura H, Izumimoto N, Kobayashi R, Endo T, Nagase H (2008) Design, synthesis, and structure–activity relationship of novel opioid κ-agonists. Bioorg Med Chem 16:9188–9201

    Article  CAS  Google Scholar 

  15. Nemoto T, Fujii H, Narita M, Miyoshi K, Nakamura A, Suzuki T, Nagase H (2008) Synthesis of a novel 6,14-epoxymorphinan derivative and its pharmacology. Bioorg Med Chem Lett 18:6398–6401

    Article  CAS  Google Scholar 

  16. Nagase H, Watanabe A, Nemoto T, Yamaotsu N, Hayashida K, Nakajima M, Hasebe K, Nakao K, Mochizuki H, Hirono S, Fujii H (2010) Drug design and synthesis of a novel κ opioid receptor agonist with an oxabicyclo[2.2.2]octane skeleton and its pharmacology. Bioorg Med Chem Lett 20:121–124

    Article  CAS  Google Scholar 

  17. Szmuszkovicz J, Von Voigtlander PF (1982) Benzeneacetamide amines: structurally novel non-mμ opioids. J Med Chem 25:1125–1126

    Article  CAS  Google Scholar 

  18. Lahti RA, Mickelson MM, McCall JM, Von Voigtlander PF (1985) [3H]U-69593 a highly selective ligand for the opioid κ receptor. Eur J Pharmacol 109:281–284

    Article  CAS  Google Scholar 

  19. Halfpenny PR, Horwell DC, Hughes J, Hunter JC, Rees DC (1990) Highly selective κ-opioid analgesics. 3. Synthesis and structure-activity relationships of novel N-[2-(1-pyrrolidinyl)-4- or -5-substituted cyclohexyl]arylacetamide derivatives. J Med Chem 33:286–291

    Article  CAS  Google Scholar 

  20. Hunter JC, Leighton GE, Meecham KG, Boyle SJ, Horwell DC, Rees DC, Hughes J (1990) CI-977, a novel and selective agonist for the kappa-opioid receptor. Br J Pharmacol 101:183–189

    CAS  Google Scholar 

  21. Rajagopalan P, Scribner RM, Pennev P, Schmidt WK, Tam SW, Steinfels GF, Cook L (1992) DuP 747: a new, potent, kappa opioid analgesic. Synthesis and pharmacology1. Bioorg Med Chem Lett 2:715–720

    Article  CAS  Google Scholar 

  22. Rajagopalan P, Scribner RM, Pennev P, Mattei PL, Kezar HS, Cheng CY, Cheeseman RS, Ganti VR, Johnson AL, Wuonola MA, Schmidt WK, Tam SW, Steinfels GF, Cook L (1992) DuP 747: sar study. Bioorg Med Chem Lett 2:721–726

    Article  CAS  Google Scholar 

  23. Kögel B, Christoph T, Friderichs E, Hennies H-H, Matthiesen T, Schneider J, Holzgrabe U (1998) HZ2, a selective kappa-opioid agonist. CNS Drug Rev 4:54–70

    Article  Google Scholar 

  24. Siener T, Cambareri A, Kuhl U, Englberger W, Haurand M, Kögel B, Holzgrabe U (2000) Synthesis and opioid receptor affinity of a series of 2,4-diaryl-substituted 3,7-diazabicylononanones. J Med Chem 43:3746–3751

    Article  CAS  Google Scholar 

  25. Benyhe S, Márki Á, Nachtsheim C, Holzgrabe U, Borsodi A (2003) Kappa-receptor selective binding of opioid ligands with a heterocyclic bicyclo[3.3.1]nonan-9-one structure. Acta Biol Hung 54:147–155

    Article  CAS  Google Scholar 

  26. Houghten RA, Pinilla C, Appel JR, Blondelle SE, Dooley CT, Eichler J, Nefzi A, Ostresh JM (1999) Mixture-based synthetic combinatorial libraries. J Med Chem 42:3743–3778

    Article  CAS  Google Scholar 

  27. Houghten RA, Pinilla C, Giulianotti MA, Appel JR, Dooley CT, Nefzi A, Ostresh JM, Yu Y, Maggiora GM, Medina-Franco JL, Brunner D, Schneider J (2008) Strategies for the use of mixture-based synthetic combinatorial libraries: scaffold ranking, direct testing in vivo, and enhanced deconvolution by computational methods. J Comb Chem 10:3–19

    Article  CAS  Google Scholar 

  28. Freye E, Boeck G, Schaal M, Ciaramelli F (1986) The benzodiazepine (+)-tifluadom (KC-6128), but not its optical isomer (KC-5911) induces opioid kappa receptor-related EEG power spectra and evoked potential changes. Pharmacology 33:241–248

    Article  CAS  Google Scholar 

  29. Cappelli A, Anzini M, Vomero S, Menziani MC, De Benedetti PG, Sbacchi M, Clarke GD, Mennuni L (1996) Synthesis, biological evaluation, and quantitative receptor docking simulations of 2-[(acylamino)ethyl]-1,4-benzodiazepines as novel tifluadom-like ligands with high affinity and selectivity for κ-opioid receptors. J Med Chem 39:860–872

    Article  CAS  Google Scholar 

  30. Azzolina O, Collina S, Linati L, Anzini M, Cappelli A, Scheideler MA, Sbacchi M (2001) Enantiomers of 2-[(acylamino)ethyl]-1,4-benzodiazepines, potent ligands of κ-opioid receptor: chiral chromatographic resolution, configurational assignment, and biological activity. Chirality 13:606–612

    Article  CAS  Google Scholar 

  31. Anzini M, Canullo L, Braile C, Cappelli A, Gallelli A, Vomero S, Menziani MC, De Benedetti PG, Rizzo M, Collina S, Azzolina O, Sbacchi M, Ghelardini C, Galeotti N (2003) Synthesis, biological evaluation, and receptor docking simulations of 2-[(acylamino)ethyl]-1,4-benzodiazepines as κ-opioid receptor agonists endowed with antinociceptive and antiamnesic activity. J Med Chem 46:3853–3864

    Article  CAS  Google Scholar 

  32. Roth BL, Baner K, Westkaemper R, Siebert D, Rice KC, Steinberg S, Ernsberger P, Rothman RB (2002) Salvinorin A: a potent naturally occurring nonnitrogenous κ opioid selective agonist. Proc Natl Acad Sci U S A 99:11934–11939

    Article  CAS  Google Scholar 

  33. Yan F, Mosier PD, Westkaemper RB, Stewart J, Zjawiony JK, Vortherms TA, Sheffler DJ, Roth BL (2005) Identification of the molecular mechanisms by which the diterpenoid salvinorin A binds to κ-opioid receptors. Biochemistry 44:8643–8651

    Article  CAS  Google Scholar 

  34. Kane BE, Nieto MJ, McCurdy CR, Ferguson DM (2006) A unique binding epitope for salvinorin A, a non-nitrogenous kappa opioid receptor agonist. FEBS J 273:1966–1974

    Article  CAS  Google Scholar 

  35. Kane BE, McCurdy CR, Ferguson DM (2008) Toward a structure-based model of salvinorin A recognition of the κ-opioid receptor. J Med Chem 51:1824–1830

    Article  CAS  Google Scholar 

  36. Lavecchia A, Greco G, Novellino E, Vittorio F, Ronsisvalle G (2000) Modeling of κ-opioid receptor/agonists interactions using pharmacophore-based and docking simulations. J Med Chem 43:2124–2134

    Article  CAS  Google Scholar 

  37. Filizola M, Villar HO, Loew GH (2001) Molecular determinants of non-specific recognition of δ, μ, and κ opioid receptors. Bioorg Med Chem 9:69–76

    Article  CAS  Google Scholar 

  38. Filizola M, Villar HO, Loew GH (2001) Differentiation of δ, μ, and κ opioid receptor agonists based on pharmacophore development and computed physicochemical properties. J Comput Aided Mol Des 15:297–307

    Article  CAS  Google Scholar 

  39. Subramanian G, Paterlini MG, Larson DL, Portoghese PS, Ferguson DM (1998) Conformational analysis and automated receptor docking of selective arylacetamide-based κ-opioid agonists. J Med Chem 41:4777–4789

    Article  CAS  Google Scholar 

  40. Holzgrabe U, Brandt W (2003) Mechanism of action of the diazabicyclononanone-type κ-agonists. J Med Chem 46:1383–1389

    Article  CAS  Google Scholar 

  41. Pogozheva ID, Przydzial MJ, Mosberg HI (2005) Homology modeling of opioid receptor-ligand complexes using experimental constraints. AAPS J 07:E434–E448

    Article  CAS  Google Scholar 

  42. Kane BE, Svensson B, Ferguson DM (2006) Molecular recognition of opioid receptor ligands. AAPS J 8:E126–E137

    Article  CAS  Google Scholar 

  43. Kolb P, Ferreira RS, Irwin JJ, Shoichet BK (2009) Docking and chemoinformatic screens for new ligands and targets. Curr Opin Biotechnol 20:429–436

    Article  CAS  Google Scholar 

  44. Michino M, Brooks CL III (2009) Predicting structurally conserved contacts for homologous proteins using sequence conservation filters. Proteins 77:448–453

    Article  CAS  Google Scholar 

  45. Michino M, Abola E, GPCR Dock 2008 participants, Brooks CL III, Dixon JS, Moult J, Stevens RC (2009) Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008. Nat Rev Drug Discov 8:455–463

    Google Scholar 

  46. de Graaf C, Rognan D (2009) Customizing G protein-coupled receptor models for structure-based virtual screening. Curr Pharm Des 15:4026–4048

    Article  Google Scholar 

  47. Katritch V, Rueda M, Lam PC-H, Yeager M, Abagyan R (2010) GPCR 3D homology models for ligand screening: lessons learned from blind predictions of adenosine A2a receptor complex. Proteins 78:197–211

    Article  CAS  Google Scholar 

  48. Raynor K, Kong H, Chen Y, Yasuda K, Yu L, Bell GI, Reisine T (1994) Pharmacological characterization of the cloned κ-, δ-, and μ-opioid receptors. Mol Pharmacol 45:330–334

    CAS  Google Scholar 

  49. Lapalu S, Moisand C, Mazarguil H, Cambois G, Mollereau C, Meunier J-C (1997) Comparison of the structure-activity relationships of nociceptin and dynorphin A using chimeric peptides. FEBS Lett 417:333–336

    Article  CAS  Google Scholar 

  50. Emmerson PJ, Liu MR, Woods JH, Medzihradsky F (1994) Binding affinity and selectivity of opioids at mu, delta and kappa receptors in monkey brain membranes. J Pharmacol Exp Ther 271:1630–1637

    CAS  Google Scholar 

  51. Gear RW, Miaskowski C, Gordon NC, Paul SM, Heller PH, Levine JD (1999) The kappa opioid nalbuphine produces gender- and dose-dependent analgesia and antianalgesia in patients with postoperative pain. Pain 83:339–345

    Article  CAS  Google Scholar 

  52. Giardina G, Clarke GD, Dondio G, Petrone G, Sbacchi M, Vecchietti V (1994) Selective κ-opioid agonists: synthesis and structure-activity relationships of piperidines incorporating an oxo-containing acyl group. J Med Chem 37:3482–3491

    Article  CAS  Google Scholar 

  53. Wang Y, Tang K, Inan S, Siebert D, Holzgrabe U, Lee DYW, Huang P, Li J-G, Cowan A, Liu-Chen L-Y (2005) Comparison of pharmacological activities of three distinct κ ligands (Salvinorin A, TRK-820 and 3FLB) on κ opioid receptors in vitro and their antipruritic and antinociceptive activities in vivo. J Pharmacol Exp Ther 312:220–230

    Article  CAS  Google Scholar 

  54. Ostresh JM, Schoner CC, Hamashin VT, Nefzi A, Meyer J-P, Houghten RA (1998) Solid-phase synthesis of trisubstituted bicyclic guanidines via cyclization of reduced n-acylated dipeptides. J Org Chem 63:8622–8623

    Article  CAS  Google Scholar 

  55. Harding WW, Tidgewell K, Byrd N, Cobb H, Dersch CM, Butelman ER, Rothman RB, Prisinzano TE (2005) Neoclerodane diterpenes as a novel scaffold for μ opioid receptor ligands. J Med Chem 48:4765–4771

    Article  CAS  Google Scholar 

  56. Prisinzano TE, Tidgewell K, Harding WW (2005) κ Opioids as potential treatments for stimulant dependence. AAPS J 07:E592–E599

    Article  CAS  Google Scholar 

  57. Tidgewell K, Groer CE, Harding WW, Lozama A, Schmidt M, Marquam A, Hiemstra J, Partilla JS, Dersch CM, Rothman RB, Bohn LM, Prisinzano TE (2008) Herkinorin analogues with differential β-arrestin-2 interactions. J Med Chem 51:2421–2431

    Article  CAS  Google Scholar 

  58. Lin C-E, Takemori AE, Portoghese PS (1993) Synthesis and κ-opioid antagonist selectivity of a norbinaltorphimine congener. Identification of the address moiety required for κ-antagonist activity. J Med Chem 36:2412–2415

    Article  CAS  Google Scholar 

  59. Jones RM, Hjorth SA, Schwartz TW, Portoghese PS (1998) Mutational evidence for a common κ antagonist binding pocket in the wild-type κ and mutant μ[K303E] opioid receptors. J Med Chem 41:4911–4914

    Article  CAS  Google Scholar 

  60. Metzger TG, Paterlini MG, Ferguson DM, Portoghese PS (2001) Investigation of the selectivity of oxymorphone- and naltrexone-derived ligands via site-directed mutagenesis of opioid receptors: exploring the ‘address’ recognition locus. J Med Chem 44:857–862

    Article  CAS  Google Scholar 

  61. Martin WR (1983) Pharmacology of opioids. Pharmacol Rev 35:283–323

    CAS  Google Scholar 

  62. Feinberg AP, Creese I, Snyder SH (1976) The opiate receptor: a model explaining structure-activity relationships of opiate agonists and antagonists. Proc Natl Acad Sci USA 73:4215–4219

    Article  CAS  Google Scholar 

  63. Portoghese PS (1965) A new concept on the mode of interaction of narcotic analgesics with receptors. J Med Chem 8:609–616

    Article  CAS  Google Scholar 

  64. Portoghese PS, Alreja BD, Larson DL (1981) Allylprodine analogs as receptor probes. Evidence that phenolic and nonphenolic ligands interact with different subsites on identical opioid receptors. J Med Chem 24:782–787

    Article  CAS  Google Scholar 

  65. Gozalbes R, Barbosa F, Nicolaï E, Horvath D, Froloff N (2009) Development and validation of a pharmacophore-based QSAR model for the prediction of CNS activity. ChemMedChem 4:204–209

    Article  CAS  Google Scholar 

  66. Medina-Franco JL, Martnez-Mayorga K, Bender A, Marn RM, Giulianotti MA, Pinilla C, Houghten RA (2009) Characterization of activity landscapes using 2D and 3D similarity methods: consensus activity cliffs. J Chem Inf Model 49:477–491

    Article  CAS  Google Scholar 

  67. Yamaotsu N, Fujii H, Nagase H, Hirono S (2010) Identification of the three-dimensional pharmacophore of κ-opioid receptor agonists. Bioorg Med Chem 18:4446–4452

    Article  CAS  Google Scholar 

  68. Fujii H, Narita M, Mizoguchi H, Murachi M, Tanaka T, Kawai K, Tseng LF, Nagase H (2004) Drug design and synthesis of ε opioid receptor agonist: 17-(cyclopropylmethyl)-4,5α-epoxy-3,6β-dihydroxy-6,14-endoethenomorphinan-7α-(N-methyl-N-phenethyl)carboxamide (TAN-821) inducing antinociception mediated by putative ε opioid receptor. Bioorg Med Chem 12:4133–4145

    Article  CAS  Google Scholar 

  69. Kuhl U, von Korff M, Baumann K, Burschka C, Holzgrabe U (2001) Stereochemical behaviour of κ-agonistic 2,4-dipyridin-2-yl-3,7-diazabicyclo[3.3.1]nonanones—influence of the substituent in position N3. J Chem Soc Perkin Trans 2:2037–2042

    Google Scholar 

  70. Tsujishita H, Hirono S (1997) Camdas: an automated conformational analysis system using molecular dynamics. J Comput Aided Mol Des 11:305–315

    Article  CAS  Google Scholar 

  71. Halgren TA (1999) MMFF VI. MMFF94s option for energy minimization studies. J Comput Chem 20:720–729

    Article  CAS  Google Scholar 

  72. Halgren TA (1999) MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. J Comput Chem 20:730–748

    Article  CAS  Google Scholar 

  73. Iwase K, Hirono S (1999) Estimation of active conformations of drugs by a new molecular superposing procedure. J Comput Aided Mol Des 13:499–512

    Article  CAS  Google Scholar 

  74. Nagase H, Osa Y, Nemoto T, Fujii H, Imai M, Nakamura T, Kanemasa T, Kato A, Gouda H, Hirono S (2009) Design and synthesis of novel delta opioid receptor agonists and their pharmacologies. Bioorg Med Chem Lett 19:2792–2795

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We reused some content from [67] with permission from Elsevier. Copyright (2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Yamaotsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yamaotsu, N., Hirono, S. (2010). 3D-Pharmacophore Identification for κ-Opioid Agonists Using Ligand-Based Drug-Design Techniques. In: Nagase, H. (eds) Chemistry of Opioids. Topics in Current Chemistry, vol 299. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2010_84

Download citation

Publish with us

Policies and ethics