Skip to main content

Synthesis of Neoclerodane Diterpenes and Their Pharmacological Effects

  • Chapter
  • First Online:
Chemistry of Opioids

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 299))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ac:

Acetyl

acac:

Acetylacetonate

AIBN:

2,2′-Azobisisobutyronitrile

Ar:

Aryl

BINAP:

2,2′-Bis(diphenylphosphino)-1,1′-binaphthalene

Bn:

Benzyl

Boc:

tert-Butoxycarbonyl

BOM:

Benzyloxymethyl

Bu:

Butyl

Bz:

Benzoyl

cat:

Catalyst

CC:

cis-cis

CDMT:

2-Chloro-4,6-dimethoxy-1,3,5-triazine

CNS:

Central nervous system

Cp:

Cyclopentadienyl

CT:

cis-trans

d:

Day(s)

dba:

Dibenzylideneacetone

DBAD:

Di-tert-butylazodicarboxylate

DBU:

1,8-Diazabicyclo[5.4.0]undec-7-ene

DCC:

N,N-Dicyclohexylcarbodiimide

DDQ:

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone

DEAD:

Diethyl azodicarboxylate

DIAD:

Diisopropyl azodicarboxylate

DIBALH:

Diisobutylaluminum hydride

DMAP:

4-(Dimethylamino)pyridine

DMF:

Dimethylformamide

DMPU:

1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone

DMSO:

Dimethylsulfoxide

DOB:

4-Bromo-2,5-dimethoxyamphetamine

DOP:

δ Opioid receptor

dppf:

1,1′-Bis(diphenylphosphino)ferrocene

EDCI:

N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide

eq.:

Equivalent(s)

Et:

Ethyl

Fmoc:

9-Fluorenylmethoxycarbonyl

h:

Hour(s)

HOBt:

1-Hydroxybenzotriazole

HPLC:

High pressure liquid chromatography

Im:

Imidazole

i-Pr:

Isopropyl

KHMDS:

Potassium hexamethyldisilazide, potassium bis(trimethylsilyl)amide

KOP:

κ Opioid receptor

L:

Liter(s)

LAH:

Lithium aluminum hydride

LHMDS:

Lithium hexamethyldisilazide, lithium bis(trimethylsilyl)amide

LSD:

Lysergic acid diethylamide

m-CPBA:

m-Chloroperoxybenzoic acid

Me:

Methyl

MEM:

(2-Methoxyethoxy)methyl

Me-WMK:

(R)-(−)-Wieland–Miescher ketone

min:

Minute(s)

MNBA:

2-Methyl-6-nitrobenzoic anhydride

mol:

Mole(s)

MOM:

Methoxymethyl

MOP:

μ Opioid receptor

Ms:

Methanesulfonyl (mesyl)

NaHMDS:

Sodium hexamethyldisilazide

NBS:

N-Bromosuccinimide

n-bu:

n-Butyl

NCS:

N-Chlorosuccinimide

NMM:

4-Methylmorpholine

NMO:

4-Methylmorpholine N-oxide

PCC:

Pyridinium chlorochromate

PDC:

Pyridinium dichromate

Ph:

Phenyl

PPTS:

Pyridinium p-toluenesulfonate

Pr:

Propyl

PTSA:

p-Toluene sulfonic acid

Pv:

Pivaloyl

py:

Pyridine

rt:

Room temperature

s:

Second(s)

SAR:

Structure-activity relationship

s-Bu:

sec-Butyl

TBAF:

Tetrabutylammonium fluoride

TBS:

tert-Butyldimethylsilyl

TBSOTf:

tert-Butyldimethylsilyl trifluoromethaneulfonate

t-Bu:

tert-Butyl

TC:

trans-cis

TES:

Triethylsilyl

Tf:

Trifluoromethanesulfonyl (triflyl)

TFA:

Trifluoroacetic acid

TFAA:

Trifluoroacetic anhydride

THF:

Tetrahydrofuran

THP:

Tetrahydropyran-2-yl

TIPS:

Triisopropylsilyl

TLC:

Thin layer chromatography

TMS:

Trimethylsilyl

Tol:

4-Methylphenyl

Ts:

Tosyl, 4-toluenesulfonyl

TT:

trans-trans

References

  1. Valdes LJ, Butler WM, Hatfield GM et al (1984) Divinorin A, a psychotropic terpenoid, and divinorin B from the hallucinogenic Mexican mint, Salvia divinorum. J Org Chem 49:4716–4720

    Article  CAS  Google Scholar 

  2. Valdes LJ III, Diaz JL, Paul AG (1983) Ethnopharmacology of ska Maria Pastora (Salvia divinorum, Epling and Jativa-M.). J Ethnopharmacol 7:287–312

    Article  Google Scholar 

  3. Ortega A, Blount JF, Manchand PS (1982) Salvinorin, a new trans-neoclerodane diterpene from Salvia divinorum (Labiatae). J Chem Soc Perkin Trans 1:2505–2508

    Article  Google Scholar 

  4. Roth BL, Baner K, Westkaemper R et al (2002) Salvinorin A: a potent naturally occurring nonnitrogenous kappa opioid selective agonist. Proc Natl Acad Sci USA 99:11934–11939

    Article  CAS  Google Scholar 

  5. Siebert DJ (1994) Salvia divinorum and salvinorin A: new pharmacologic findings. J Ethnopharmacol 43:53–56

    Article  CAS  Google Scholar 

  6. Valdes LJ III (1994) Salvia divinorum and the unique diterpene hallucinogen, Salvinorin (divinorin) A. J Psychoactive Drugs 26:277–283

    Google Scholar 

  7. Prisinzano TE (2005) Psychopharmacology of the hallucinogenic sage Salvia divinorum. Life Sci 78:527–531

    CAS  Google Scholar 

  8. Aldrich J, Vigil-Cruz S (2003) Narcotic analgesics. In: Abraham DA (ed) Burger's medicinal chemistry and drug discovery, 6th edn. John Wiley, New York

    Google Scholar 

  9. Eguchi M (2004) Recent advances in selective opioid receptor agonists and antagonists. Med Res Rev 24:182–212

    Article  CAS  Google Scholar 

  10. Kaczor A, Matosiuk D (2002) Non-peptide opioid receptor ligands – recent advances. Part II. Antagonists. Curr Med Chem 9:1591–1603

    CAS  Google Scholar 

  11. Kaczor A, Matosiuk D (2002) Non-peptide opioid receptor ligands – recent advances. Part I. Agonists. Curr Med Chem 9:1567–1589

    CAS  Google Scholar 

  12. Lu Y, Weltrowska G, Lemieux C et al (2001) Stereospecific synthesis of (2S)-2-methyl-3-(2′, 6′-dimethyl-4′-hydroxyphenyl)propionic acid (Mdp) and its incorporation into an opioid peptide. Bioorg Med Chem Lett 11:323–325

    Article  CAS  Google Scholar 

  13. Surratt CK, Johnson PS, Moriwaki A et al (1994) μ-Opiate receptor. Charged transmembrane domain amino acids are critical for agonist recognition and intrinsic activity. J Biol Chem 269:20548–20553

    CAS  Google Scholar 

  14. Weltrowska G, Chung NN, Lemieux C et al (2010) “Carba”-analogues of fentanyl are opioid receptor agonists. J Med Chem 53:2875–2881

    Article  CAS  Google Scholar 

  15. Ruzicka L (1953) Isoprene rule and the biogenesis of terpenic compounds. Experientia 9:357–367

    Article  CAS  Google Scholar 

  16. Breitmaier E (2006) Terpenes: flavors, fragrances, pharmaca, pheromones. Wiley-VCH, Weinheim

    Google Scholar 

  17. Tokoroyama T (2000) Synthesis of clerodane diterpenoids and related compounds – stereoselective construction of the decalin skeleton with multiple contiguous stereogenic centers. Synthesis 611–633

    Google Scholar 

  18. Kohno H, Maeda M, Tanino M et al (2002) A bitter diterpenoid furanolactone columbin from Calumbae Radix inhibits azoxymethane-induced rat colon carcinogenesis. Cancer Lett 183:131–139

    Article  CAS  Google Scholar 

  19. Moody JO, Robert VA, Connolly JD et al (2006) Anti-inflammatory activities of the methanol extracts and an isolated furanoditerpene constituent of Sphenocentrum jollyanum Pierre (Menispermaceae). J Ethnopharmacol 104:87–91

    Article  CAS  Google Scholar 

  20. Shi Q, Liang M, Zhang W et al (2007) Quantitative LC/MS/MS method and pharmacokinetic studies of columbin, an anti-inflammation furanoditerpen isolated from Radix Tinosporae. Biomed Chromatogr 21:642–648

    Article  CAS  Google Scholar 

  21. Bruno M, Fazio C, Arnold NA (1996) Neo-clerodane diterpenoids from Scutellaria cypria. Phytochemistry 42:555–557

    Article  CAS  Google Scholar 

  22. Lallemand J-Y, Six Y, Ricard L (2002) A concise synthesis of an advanced clerodin intermediate through a Vaultier tandem reaction. Eur J Org Chem 503–513

    Google Scholar 

  23. Ley SV, Denholm AA, Wood A (1993) The chemistry of azadirachtin. Nat Prod Rep 10:109–157

    Article  CAS  Google Scholar 

  24. Merritt AT, Ley SV (1992) Clerodane diterpenoids. Nat Prod Rep 9:243–287

    Article  CAS  Google Scholar 

  25. Rogers D, Unal GG, Williams DJ et al. (1979) The crystal structure of 3-epicaryoptin and the reversal of the currently accepted absolute configuration of clerodin. J Chem Soc Chem Commun 97–99

    Google Scholar 

  26. Lingham AR, Huegel HM, Rook TJ (2006) Studies towards the synthesis of salvinorin A. Aus J Chem 59:340–348

    Article  CAS  Google Scholar 

  27. Scheerer JR, Lawrence JF, Wang GC et al (2007) Asymmetric synthesis of salvinorin A, a potent kappa opioid receptor agonist. J Am Chem Soc 129:8968–8969

    Article  CAS  Google Scholar 

  28. Satoh T, Kokubo K, Miura M et al (1994) Effect of copper and iron cocatalysts on the palladium-catalyzed carbonylation reaction of iodobenzene. Organometallics 13:4431–4436

    Article  CAS  Google Scholar 

  29. Shiina I (2004) An effective method for the synthesis of carboxylic esters and lactones using substituted benzoic anhydrides with Lewis acid catalysts. Tetrahedron 60:1587–1599

    Article  CAS  Google Scholar 

  30. Shiina I, Kawakita Y-i (2004) The effective use of substituted benzoic anhydrides for the synthesis of carboxamides. Tetrahedron 60:4729–4733

    Article  CAS  Google Scholar 

  31. Burns A, Forsyth C (2008) Intramolecular Diels–Alder/Tsuji allylation assembly of the functionalized trans-decalin of salvinorin A. Org Lett 10:97–100

    Article  CAS  Google Scholar 

  32. Nozawa M, Suka Y, Hoshi T et al (2008) Total synthesis of the hallucinogenic neoclerodane diterpenoid salvinorin A. Org Lett 10:1365–1368

    Article  CAS  Google Scholar 

  33. Hagiwara H, Hamano K, Nozawa M et al (2005) The first total synthesis of (−)-methyl barbascoate. J Org Chem 70:2250–2255

    Article  CAS  Google Scholar 

  34. Béguin C, Richards MR, Li J-G et al (2006) Synthesis and in vitro evaluation of salvinorin A analogues: effect of configuration at C(2) and substitution at C(18). Bioorg Med Chem Lett 16:4679–4685

    Article  Google Scholar 

  35. Harding Wayne W, Schmidt M, Tidgewell K et al (2006) Synthetic studies of neoclerodane diterpenes from Salvia divinorum: semisynthesis of salvinicins A and B and other chemical transformations of salvinorin A. J Nat Prod 69:107–112

    Article  CAS  Google Scholar 

  36. Hagiwara H, Suka Y, Nojima T et al (2009) Second-generation synthesis of salvinorin A. Tetrahedron 65:4820–4825

    Article  CAS  Google Scholar 

  37. Bergman YE, Mulder R, Perlmutter P (2009) Total synthesis of 20-norsalvinorin A. 1. Preparation of a key intermediate. J Org Chem 74:2589–2591

    Article  CAS  Google Scholar 

  38. Cheung AK, Murelli R, Snapper ML (2004) Total syntheses of (+)- and (−)-cacospongionolide B, cacospongionolide E, and related analogues. Preliminary study of structural features required for phospholipase A2 inhibition. J Org Chem 69:5712–5719

    Article  CAS  Google Scholar 

  39. Harding WW, Tidgewell K, Byrd N et al (2005) Neoclerodane diterpenes as a novel scaffold for micro opioid receptor ligands. J Med Chem 48:4765–4771

    Article  CAS  Google Scholar 

  40. Tidgewell K, Harding WW, Schmidt M et al (2004) A facile method for the preparation of deuterium labeled salvinorin A: synthesis of [2, 2, 2–2H3]-salvinorin A. Bioorg Med Chem Lett 14:5099–5102

    Article  CAS  Google Scholar 

  41. Lee DYW, Karnati VVR, He M et al (2005) Synthesis and in vitro pharmacological studies of new C(2) modified salvinorin A analogues. Bioorg Med Chem Lett 15:3744–3747

    Article  CAS  Google Scholar 

  42. Koreeda M, Brown L, Valdes LJ (1990) The absolute stereochemistry of salvinorins. Chem Lett 19:2015–2018

    Article  Google Scholar 

  43. Munro TA, Goetchius GW, Roth BL et al (2005) Autoxidation of salvinorin A under basic conditions. J Org Chem 70:10057–10061

    Article  CAS  Google Scholar 

  44. Béguin C, Duncan K, Munro T et al (2009) Modification of the furan ring of salvinorin A: identification of a selective partial agonist at the kappa opioid receptor. Bioorg Med Chem 17:1370–1380

    Article  CAS  Google Scholar 

  45. Bikbulatov RV, Stewart J, Jin W et al (2008) Short synthesis of a novel class of salvinorin A analogs with hemiacetalic structure. Tetrahedron Lett 49:937–940

    Article  CAS  Google Scholar 

  46. Lozama A, Prisinzano TE (2009) Chemical methods for the synthesis and modification of neoclerodane diterpenes. Bioorg Med Chem Lett 19:5490–5495

    Article  CAS  Google Scholar 

  47. Tidgewell K, Harding WW, Lozama A et al (2006) Synthesis of salvinorin A analogues as opioid receptor probes. J Nat Prod 69:914–918

    Article  CAS  Google Scholar 

  48. Tidgewell K, Groer CE, Harding WW et al (2008) Herkinorin analogues with differential beta-arrestin-2 interactions. J Med Chem 51:2421–2431

    Article  CAS  Google Scholar 

  49. Munro TA, Rizzacasa MA, Roth BL et al (2005) Studies toward the pharmacophore of salvinorin A, a potent kappa opioid receptor agonist. J Med Chem 48:345–348

    Article  CAS  Google Scholar 

  50. Harding WW, Schmidt M, Tidgewell K et al (2006) Synthetic studies of neoclerodane diterpenes from Salvia divinorum: semisynthesis of salvinicins A and B and other chemical transformations of salvinorin. J Nat Prod 69:107–112

    Article  CAS  Google Scholar 

  51. Béguin C, Richards MR, Wang Y et al (2005) Synthesis and in vitro pharmacological evaluation of salvinorin A analogues modified at C(2). Bioorg Med Chem Lett 15:2761–2765

    Article  CAS  Google Scholar 

  52. Munro TA, Duncan KK, Xu W et al (2008) Standard protecting groups create potent and selective κ opioids: salvinorin B alkoxymethyl ethers. Bioorg Med Chem 16:1279–1286

    Article  CAS  Google Scholar 

  53. Stewart DJ, Fahmy H, Roth BL et al (2006) Bioisosteric modification of salvinorin A, a potent and selective kappa-opioid receptor agonist. Arzneim Forsch 56:269–275

    CAS  Google Scholar 

  54. Bikbulatov RV, Yan F, Roth BL et al (2007) Convenient synthesis and in vitro pharmacological activity of 2-thioanalogs of salvinorins A and B. Bioorg Med Chem Lett 17:2229–2232

    Article  CAS  Google Scholar 

  55. Kouzi SA, McMurtry RJ, Nelson SD (1994) Hepatotoxicity of germander (Teucrium chamaedrys L.) and one of its constituent neoclerodane diterpenes teucrin A in the mouse. Chem Res Toxicol 7:850–856

    Article  CAS  Google Scholar 

  56. Simpson DS, Katavic PL, Lozama A et al (2007) Synthetic studies of neoclerodane diterpenes from Salvia divinorum: preparation and opioid receptor activity of salvinicin analogues. J Med Chem 50:3596–3603

    Article  CAS  Google Scholar 

  57. Harding WW, Schmidt M, Tidgewell K et al (2006) Synthetic studies of neoclerodane diterpenes from Salvia divinorum: selective modification of the furan ring. Bioorg Med Chem Lett 16:3170–3174

    Article  CAS  Google Scholar 

  58. Simpson DS, Lovell KM, Lozama A et al (2009) Synthetic studies of neoclerodane diterpenes from Salvia divinorum: role of the furan in affinity for opioid receptors. Org Biomol Chem 7:3748–3756

    Article  CAS  Google Scholar 

  59. Stille JK (1986) The palladium-catalyzed cross-coupling reactions of organotin reagents with organic electrophiles [New Synthetic Methods (58)]. Angew Chem Int Ed 25:508–524

    Article  Google Scholar 

  60. Yang L, Xu W, Chen F et al (2009) Synthesis and biological evaluation of C-12 triazole and oxadiazole analogs of salvinorin A. Bioorg Med Chem Lett 19:1301–1304

    Article  CAS  Google Scholar 

  61. Valdes LJ, Chang H-M, Visger DC et al (2001) Salvinorin C, a new neoclerodane diterpene from a bioactive fraction of the hallucinogenic Mexican mint Salvia divinorum. Org Lett 3:3935–3937

    Article  CAS  Google Scholar 

  62. Holden KG, Tidgewell K, Marquam A et al (2007) Synthetic studies of neoclerodane diterpenes from Salvia divinorum: exploration of the 1-position. Bioorg Med Chem Lett 17:6111–6115

    Article  CAS  Google Scholar 

  63. Lee DYW, He M, Kondaveti L et al (2005) Synthesis and in vitro pharmacological studies of C(4) modified salvinorin A analogues. Bioorg Med Chem Lett 15:4169–4173

    Article  CAS  Google Scholar 

  64. Lee DYW, He M, Liu-Chen L-Y et al (2006) Synthesis and in vitro pharmacological studies of new C(4)-modified salvinorin A analogs. Bioorg Med Chem Lett 16:5498–5502

    Article  CAS  Google Scholar 

  65. Prisinzano TE, Rothman RB (2008) Salvinorin A analogs as probes in opioid pharmacology. Chem Rev 108:1732–1743

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Institute on Drug Abuse, the National Institutes of Health, and the University of Kansas for financial support of ongoing research programs. The content is the sole responsibility of the authors and does not necessarily represent the official view of the National Institute on Drug Abuse or the National Institutes of Health. K.M.L. and K.M.S. thank the NIH Dynamic Aspects of Chemical Biology Training Grant for pre-doctoral fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Prisinzano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lovell, K.M., Prevatt-Smith, K.M., Lozama, A., Prisinzano, T.E. (2010). Synthesis of Neoclerodane Diterpenes and Their Pharmacological Effects. In: Nagase, H. (eds) Chemistry of Opioids. Topics in Current Chemistry, vol 299. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2010_82

Download citation

Publish with us

Policies and ethics