Skip to main content

Synthesis of Novel Basic Skeletons Derived from Naltrexone

  • Chapter
  • First Online:
Chemistry of Opioids

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 299))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although morphine is a classical μ opioid receptor agonist, its intrinsic activity is known to be lower than that of a representative full μ opioid receptor agonist, DAMGO. Moreover, recent reports showed that morphine was a partial agonist for the opioid μ receptor in some pharmacological assays. See [34–38].

  2. 2.

    The thermal decarboxylation of a β-lactone has been widely used for preparation of an olefin. See [51, 52]. Recent examples of the thermal decarboxylation of β-lactones are described in [53–57].

  3. 3.

    Olefins have been prepared by elimination reactions, in which oxazolidinone functioned as a leaving group. See [59–61].

  4. 4.

    In cyclic systems, the extent of anti and syn elimination depends on ring size. Cyclohexyl systems have a very strong preference for anti elimination. See [62, 63].

  5. 5.

    The reaction of 58a with the CPM group seemed to proceed most rapidly. This observation might be explained by considering the very stable cyclopropylcabinyl cation (see Sect. 4 and [39–42]).

  6. 6.

    For X-ray crystallography of nonconjugated iminium salts, see [69–71].

  7. 7.

    For X-ray crystallography of conjugated iminium salts, see [72–82].

  8. 8.

    The NBO analysis showed that the optimal bond length of C6–C7 was also 0.007 Å longer than that of the corresponding bond in 68c, with an interaction energy between σ (C6–C7) and π* (N1–C23) of 4.98 kcal/mol. However, in X-ray crystallography, the C6–C7 in 63b showed the same bond length (1.551 Å) as the C13–C12 in 68c. This result suggested that the C5–C6 might also partially participate in the stabilization of the iminium ion.

  9. 9.

    In the case of the Fe(CO)3 complex 64, the reduction was reported to take 20 min (see [84]). On the other hand, the reduction of 63a was completed within 5 min.

  10. 10.

    The reaction of the Fe(CO)3 complex 64 with NaCN was reported to proceed in acetone under reflux for 5 min (see [83]). In contrast, the reaction of 63a was completed at room temperature within 5 min.

  11. 11.

    The fragmentation of a 7-acyl-6,14-endoethenotetrahydrothebaine derivative was also reported. See [99].

  12. 12.

    For synthesis of pentazocine, see [107–111]. For synthesis of (–)-pentazocine with optical resolution, see [112, 113]. For the asymmetric synthesis of (–)-pentazocine, see the asymmetric synthesis of (–)-metazocine (an N-methyl derivative of (–)-pentazocine) has also been reported, [114]; very recently, the asymmetric synthesis of (–)-9-epi-pentazocine was also reported [115]; it has been shown that (–)-pentazocine is more potent than its antipode [116].

Abbreviations

ACE:

1-Chloroethoxycarbonyl

COSY:

Correlation spectroscopy

CPM:

Cyclopropylmethyl

GPCR:

G-protein-coupled receptor

HMBC:

Heteronuclear multiple bond coherence

HSQC:

Heteronuclear single quantum correlation

MVD:

Mouse vas deferens

NBO:

Natural bond orbital

NOE:

Nuclear Overhauser effect

NTI:

Naltrindole

TCE:

1,1,2,2-Tetrachloroethane

Troc:

2,2,2-Trichloroethoxycarbonyl

References

  1. Sertürner FW (1805) Tommsdrof’s J Pharmazie 13:234

    Google Scholar 

  2. Gulland JM, Robinson R (1923) J Chem Soc 980

    Google Scholar 

  3. Gulland JM, Robinson R (1925) Mem Proc Manchester Lit Phil Soc 69:79

    CAS  Google Scholar 

  4. Schöpf C (1927) Justus Liebigs Ann Chem 452:411

    Google Scholar 

  5. Casy AF, Parfitt RT (1986) Opioid analgesics, chemistry and receptor. Plenum, New York

    Google Scholar 

  6. Lenz GR, Evans SM, Walters DE, Hopfinger AJ, Hammond DL (1986) Opiates. Academic, Orlando

    Google Scholar 

  7. Portoghese PS, Nagase H, Lipkowski AW, Larson DL, Takemori AE (1988) J Med Chem 31:836

    Article  CAS  Google Scholar 

  8. Portoghese PS, Sultana M, Nagase H, Takemori AE (1988) J Med Chem 31:281

    Article  CAS  Google Scholar 

  9. Lipkowski AW, Nagase H, Portoghese PS (1986) Tetrahedron Lett 27:4257

    Article  CAS  Google Scholar 

  10. Portoghese PS (1989) Trends Pharmacol Sci 10:230

    Article  CAS  Google Scholar 

  11. Portoghese PS (1991) J Med Chem 34:1757

    Article  CAS  Google Scholar 

  12. Portoghese PS, Garzon-Aburbeth A, Nagase H, Lin CE, Takemori AE (1991) J Med Chem 34:1792

    Google Scholar 

  13. Nagase H, Abe A, Portoghese PS (1989) J Org Chem 54:4120

    Article  CAS  Google Scholar 

  14. Nagase H, Portoghese PS (1990) J Org Chem 55:365

    Article  CAS  Google Scholar 

  15. MaloneyHuss KE, Portoghese PS (1990) J Org Chem 55:2957

    Article  CAS  Google Scholar 

  16. Watanabe A, Kai T, Nagase H (2006) Org Lett 8:523

    Article  CAS  Google Scholar 

  17. Reisine T, Pasternak G (1995) Opioid analgesics and antagonists. In: Hardman JG, Limbird LE, Molinof PE, Ruddon RW, Gilman AG (eds) Pharmaceutical basis of therapeutics, 9th edn. Mcgraw-Hill, New York, p 521

    Google Scholar 

  18. Burkey TH, Ehlert FJ, Hosohata Y, Quack RM, Cowell S, Hosohata K, Varga E, Stropova D, Li X, Slate C, Nagase H, Porreca F, Hruby VJ, Roeske WR, Yamamura HI (1998) Life Sci 62:1531

    Article  CAS  Google Scholar 

  19. Fujii H, Narita M, Mizoguchi H, Murachi M, Tanaka T, Kawai K, Tseng LF, Nagase H (2004) Bioorg Med Chem 12:4133

    Article  CAS  Google Scholar 

  20. Corey EJ, Erickson BW (1971) J Org Chem 36:3553

    Article  CAS  Google Scholar 

  21. Mori K, Hashimoto H, Takenaka Y, Takigawa T (1975) Synthesis 720

    Google Scholar 

  22. Osa Y, Ida Y, Yano Y, Furuhata K, Nagase H (2006) Heterocycles 69:271

    Article  CAS  Google Scholar 

  23. Nagase H, Watanabe A, Nemoto T, Yamamoto N, Osa Y, Sato N, Yoza K, Kai T (2007) Tetrahedron Lett 48:2547

    Article  CAS  Google Scholar 

  24. Trost BM, Melvin LS (1975) Sulfur ylides: emerging synthetic intermediates. Academic, New York

    Google Scholar 

  25. Sawa YK, Tada H (1968) Tetrahedon 24:6185

    Article  CAS  Google Scholar 

  26. Fujii H, Imaide S, Watanabe A, Nemoto T, Nagase H (2008) Tetrahedron Lett 49:6293

    Article  CAS  Google Scholar 

  27. Hagemen HA (1953) Org React 7:198

    Google Scholar 

  28. von Braun J (1914) Ber 47:2312

    Google Scholar 

  29. Bentley KW, Hardy DG (1967) J Am Chem Soc 89:3281

    Article  CAS  Google Scholar 

  30. Cooley JH, Evain EJ (1989) Synthesis 1

    Google Scholar 

  31. Montzka TA, Matiskella JD, Partyka RA (1974) Tetrahedron Lett 15:1325

    Article  Google Scholar 

  32. Olofson AR, Schnur RC, Bunes L, Pepe JP (1977) Tetrahedron Lett 18:1567

    Article  Google Scholar 

  33. Olofson AR, Martz JT, Senet JP, Piteau M, Malfroot T (1984) J Org Chem 49:2081

    Article  CAS  Google Scholar 

  34. Selley DE, Sim LJ, Xiao R, Liu Q, Childers SR (1997) Mol Pharmacol 51:87

    CAS  Google Scholar 

  35. Brown GP, Yang K, Ouerfelli O, Standifer KM, Byrd D, Pasternak GW (1997) J Pharmacol Exp Ther 282:1291

    CAS  Google Scholar 

  36. Traynor JR, Clark MJ, Remmers AE (2002) J Pharmacol Exp Ther 300:157

    Article  CAS  Google Scholar 

  37. Schulz S, Mayer D, Pfeiffer M, Stumm R, Koch T, Höllt V (2004) EMBO J 23:3282

    Article  CAS  Google Scholar 

  38. Johnson EA, Oldfield S, Braksator E, Gonzalez-Cuello A, Couch D, Hall KJ, Mundell SJ, Bailey CP, Kelly E, Henderson G (2006) Mol Pharmacol 70:676

    Article  CAS  Google Scholar 

  39. Gould ES (1959) Mechanism and structure in organic chemistry. Henry Holt and Company, New York, pp 561–617

    Google Scholar 

  40. Richey HG Jr (1972) In: Olah GA, Schleyer PR (eds) Carbonium ions, vol III. Wiley, Canada, pp 1201–1294

    Google Scholar 

  41. Lowry TH, Richardson KS (1987) Mechanism and theory in organic chemistry, 3rd edn. Harper & Row Publishers, New York, pp 425–515

    Google Scholar 

  42. Olah GA, Prakash Reddy V, Surya Prakash GK (1992) Chem Rev 92:69

    Article  CAS  Google Scholar 

  43. Nagase H, Yamamoto N, Nemoto T, Yoza K, Kamiya K, Hirono S, Momen S, Izumimoto N, Hasebe K, Mochizuki H, Fujii H (2008) J Org Chem 73:8093

    Article  CAS  Google Scholar 

  44. Fujii H, Osa Y, Ishihara M, Hanamura S, Nemoto T, Nakajima M, Hasebe K, Mochizuki H, Nagase H (2008) Bioorg Med Chem Lett 18:4978

    Article  CAS  Google Scholar 

  45. Fujii H, Imaide S, Watanabe A, Yoza K, Nakajima M, Nakao K, Mochizuki H, Sato N, Nemoto T, Nagase H (2010) J Org Chem 75:995

    Article  CAS  Google Scholar 

  46. Beckett AH, Casy AF (1954) J Pharm Pharmacol 6:986

    Google Scholar 

  47. Beckett AH (1956) J Pharm Pharmacol 8:848

    CAS  Google Scholar 

  48. Casy AF, Parfitt RT (1986) Opioid analgesics, chemistry and receptors. Plenum, New York, pp 473–475

    Google Scholar 

  49. Imaide S, Fujii H, Watanabe A, Nemoto T, Nakajima M, Nakao K, Mochizuki H, Nagase H (2010) Bioorg Med Chem Lett 20:1055

    Article  CAS  Google Scholar 

  50. Bal BS, Childers WE Jr, Pinnick HW (1981) Tetrahedron 37:2091

    Article  CAS  Google Scholar 

  51. Pommier A, Pons J-M (1993) Synthesis 441

    Google Scholar 

  52. Rayner CM (1995) In: Katritzky AR, Meth-Cohn O, Rees CW (eds) Comprehensive organic functional group transformations, vol 1. Pergamon, Oxford, pp 673–718

    Google Scholar 

  53. Braun NA, Meier M, Schmaus G, Holscher B, Pickenhangen W (2003) Helv Chim Acta 86:2698

    Article  CAS  Google Scholar 

  54. Merlic CA, Doroh BC (2003) J Org Chem 68:6056

    Article  CAS  Google Scholar 

  55. Buckle MJC, Fleming I, Gil S, Pang KLC (2004) Org Biomol Chem 2:749

    Article  CAS  Google Scholar 

  56. Shindo M, Matsumoto K, Shishido K (2005) Chem Commun 2477

    Google Scholar 

  57. Shindo M, Matsumoto K, Shishido K (2007) Tetrahedron 63:4271

    Article  CAS  Google Scholar 

  58. Hara S, Taguchi H, Yamamoto H, Nozaki H (1975) Tetrahedron Lett 16:1545

    Google Scholar 

  59. Danishefsky SJ, Panek JS (1987) J Am Chem Soc 109:917

    Article  CAS  Google Scholar 

  60. Gates KS, Silverman RB (1989) J Am Chem Soc 111:8891

    Article  CAS  Google Scholar 

  61. Padwa A, Brodney MA, Lynch SM, Rashatasakhon P, Wang Q, Zhang H (2004) J Org Chem 69:3735

    Article  CAS  Google Scholar 

  62. Smith MB, March J (2007) March’s advanced organic chemistry, 6th edn. John Wiley, New York, pp 1482–1483, and references therein

    Google Scholar 

  63. Carey FA, Sundberg RJ (2007) Advanced organic chemistry, part A: structure and mechanisms, 5th edn. Springer, New York, p 559

    Google Scholar 

  64. Clayden J, Greeves N, Warren S, Wother P (2001) Organic chemistry. Oxford University Press, New York, pp 496–497

    Google Scholar 

  65. Portoghese PS, Sultana M, Takemori AE (1990) J Med Chem 33:1714

    Article  CAS  Google Scholar 

  66. Nemoto T, Fujii H, Nagase H (2007) Tetrahedron Lett 48:7413

    Article  CAS  Google Scholar 

  67. Nemoto T, Fujii H, Narita M, Miyoshi K, Nakamura A, Suzuki T, Nagase H (2008) Bioorg Med Chem 16:4304

    Article  CAS  Google Scholar 

  68. Morgenthaler M, Schweizer E, Hoffmann-Röder A, Benini F, Martin RE, Jaeschke G, Wager B, Fischer H, Bendels S, Zimmerli D, Schneider J, Diederich F, Kansy M, Müller K (2007) Chem Med Chem 2:1100

    CAS  Google Scholar 

  69. Trefonas LM, Flurry RL Jr, Meyers EA, Copeland RF (1966) J Am Chem Soc 88:2145

    Article  CAS  Google Scholar 

  70. Birch AJ, Fitton H, McPartlin M, Mason MR (1968) Chem Commun 531

    Google Scholar 

  71. Hollenstein S, Laube T (1990) Angew Chem Int Ed Engl 29:188

    Article  Google Scholar 

  72. Childs RF, Dickie BD, Faggiani R, Fyfe CA, Lock CJL, Wasylishen RE (1985) J Crystallogr Spectrosc Res 15:73

    Article  CAS  Google Scholar 

  73. Childs RF, Shaw GS, Lock CJL (1989) J Am Chem Soc 111:5424

    Article  CAS  Google Scholar 

  74. Santarsiero BD, James MNG, Mahendran M, Childs RF (1990) Am Chem Soc 112:9416

    Article  CAS  Google Scholar 

  75. Mass G, Rahm R, Mayer D, Baumann W (1995) Organometallics 14:1061

    Article  Google Scholar 

  76. Elia GR, Childs RF, Britten JF, Yang DSC, Santasiero BD (1996) Can J Chem 74:591

    Article  CAS  Google Scholar 

  77. Greci L, Rossetti M, Galeazzi R, Stipa P, Sgarabotto P, Cozzini PJ (1998) J Chem Soc Perkin Trans 2:2683

    Google Scholar 

  78. Herz H-G, Schatz J, Maas G (2001) J Org Chem 66:3176

    Article  CAS  Google Scholar 

  79. Nikolai J, Schlegel J, Regitz M, Maas G (2002) Synthesis 497

    Google Scholar 

  80. Reisser M, Maier A, Maas G (2003) Eur J Org Chem 2071

    Google Scholar 

  81. Levin VV, Dilman AD, Belyakov PA, Korlyukov AA, Struchkova MI, Tartakovsky VA (2005) Tetrahedron Lett 46:3729

    Article  CAS  Google Scholar 

  82. Espenlaub S, Gerster H, Maas G (2007) ARKIVOC 114

    Google Scholar 

  83. Birch AJ, Fitton H (1969) Aust J Chem 22:971

    Article  CAS  Google Scholar 

  84. Birch AJ, Kelly LF, Liepa AJ (1985) Tetrahedron Lett 26:501

    Article  CAS  Google Scholar 

  85. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  86. Fuying L, Linghuan G, Chenlei Y, Jie C, Jinggen L, Xin X, Ao Z (2009) Bioorg Med Chem Lett 19:4603

    Article  CAS  Google Scholar 

  87. Nagase H, Watanabe A, Harada M, Nakajima M, Hasebe K, Mochizuki H, Yoza K, Fujii H (2009) Org Lett 11:539

    Article  CAS  Google Scholar 

  88. Fujii H, Watanabe A, Nemoto T, Narita M, Miyoshi K, Nakamura A, Suzuki T, Nagase H (2009) Bioorg Med Chem Lett 19:438

    Article  CAS  Google Scholar 

  89. Rios CD, Joran BA, Gomes I, Devi LA (2001) Pharmacol Ther 92:71

    Article  CAS  Google Scholar 

  90. Levac BAR, O’Dowd BF, George SR (2002) Curr Opin Pharmacol 2:76

    Article  CAS  Google Scholar 

  91. Contreras JM, Bourguignon JJ (2003) In: Wermuth CG (ed) The practice of medicinal chemistry, 2nd edn. Academic, London, p 251

    Google Scholar 

  92. Watanabe A, Fujii H, Nakajima M, Hasebe K, Mochizuki H, Nagase H (2009) Bioorg Med Chem Lett 19:2416

    Article  CAS  Google Scholar 

  93. Osa Y, Ida Y, Fujii H, Nemoto T, Hasebe K, Momen S, Mochizuki H, Nagase H (2007) Chem Pharm Bull 55:1489

    Article  CAS  Google Scholar 

  94. Nemoto T, Fujii H, Narita M, Miyoshi K, Nakayama A, Suzuki T, Nagase H (2008) Bioorg Med Chem Lett 18:6398

    Article  CAS  Google Scholar 

  95. Nagase H, Hayakawa J, Kawamura K, Kawai K, Takezawa Y, Matsuura H, Tajima C, Endo T (1998) Chem Pharm Bull 46:366

    CAS  Google Scholar 

  96. Kawai K, Hayakawa J, Miyamoto T, Imamura Y, Yamane S, Wakita H, Fujii H, Kawamura K, Matsuura H, Izumimoto N, Kobayashi R, Endo T, Nagase H (2008) Bioorg Med Chem 16:9188

    Article  CAS  Google Scholar 

  97. Fujii H, Watanabe Y, Osa Y, Nemoto T, Sato N, Nagase H (2009) Tetrahedron 65:4808

    Article  CAS  Google Scholar 

  98. Bentley KW, Hardy DG, Meek B, Taylor JB, Brown JJ, Morton GO (1969) J Chem Soc (C) 2229

    Google Scholar 

  99. Bentley KW, Ball JC (1958) J Org Chem 23:1720

    Article  CAS  Google Scholar 

  100. Bentley KW, Hardy DG, Meek BJ (1967) J Am Chem Soc 89:3293

    Article  CAS  Google Scholar 

  101. Bentley KW, Hardy DG, Howell CF, Fulmor W, Lancaster JE, Brown JJ, Morton GO, Hardy RA (1967) J Am Chem Soc 89:3303

    Article  CAS  Google Scholar 

  102. Bentley KW, Bower JD, Lewis JW (1969) J Chem Soc (C) 2569

    Google Scholar 

  103. Bentley KW, Hardy DG, Lewis JW, Readhead MJ, Rushworth WI (1969) J Chem Soc (C) 826

    Google Scholar 

  104. Lewis JW, Readhead MJ (1972) J Chem Soc (C) 881

    Google Scholar 

  105. Clarke EGC (1959) Nature 184:451

    Article  CAS  Google Scholar 

  106. Archer S, Albertson NF, Harris LP, Pierson AK, Bird JG (1964) J Med Chem 7:123

    Article  CAS  Google Scholar 

  107. Kametani T, Huang S, Ihara M, Fukumoto K (1976) J Org Chem 41:2545

    Article  CAS  Google Scholar 

  108. Kametani T, Kigasawa K, Hiiragi M, Wakisaka K, Uryu T, Sugi H, Saitoh S, Ishimaru H, Haga S (1976) Chem Pharm Bull 24:1246

    CAS  Google Scholar 

  109. Kametani T, Seto H, Nemoto H, Fukumoto K (1977) J Org Chem 42:3605

    Article  CAS  Google Scholar 

  110. Rice KC, Jacobson AE (1976) J Med Chem 19:430

    Article  CAS  Google Scholar 

  111. Brine GA, Berrang B, Hayes JP, Carroll FI (1990) J Heterocycl Chem 27:2139

    Article  CAS  Google Scholar 

  112. Kitamura M, Hsiao Y, Ohta M, Tsukamoto M, Ohta T, Takaya H, Noyori R (1994) J Org Chem 59:297

    Article  CAS  Google Scholar 

  113. Kitamura M, Hsiao Y, Noyori R, Takaya H (1987) Tetrahedron Lett 28:4829

    Article  CAS  Google Scholar 

  114. Meyers AI, Dickman DA, Bailey TR (1985) J Am Chem Soc 107:7974

    Article  CAS  Google Scholar 

  115. Yang X, Zhai H, Li Z (2008) Org Lett 10:2457

    Article  CAS  Google Scholar 

  116. Tullar BF, Harris LS, Perry RL, Pierson AK, Soria AE, Wetterau WF, Albertson NF (1967) J Med Chem 10:383

    Article  CAS  Google Scholar 

  117. Kametani T, Kigasawa K, Hiiragi M, Wagatsuma N (1974) Heterocycles 2:79 and references therein

    Google Scholar 

  118. Kametani T, Huang S, Ihara M, Fukumoto K (1975) Chem Pharm Bull 23:2010

    CAS  Google Scholar 

  119. Kametani T, Honda T, Huang S, Fukumoto K (1975) Can J Chem 53:3820

    Article  CAS  Google Scholar 

  120. Boulanger WA (1999) Synth Commun 29:2201

    Article  CAS  Google Scholar 

  121. Trost BM, Weiping T (2003) J Am Chem Soc 125:8744

    Article  CAS  Google Scholar 

  122. Fujii H, Ogawa R, Jinbo E, Tsumura S, Nemoto T, Nagase H (2009) Synlett 2341

    Google Scholar 

  123. Fujii H, Okada K, Ishihara M, Hanamura S, Osa Y, Nemoto T, Nagase H (2009) Tetrahedron 65:10623

    Article  CAS  Google Scholar 

  124. Fujii H, Hirano N, Uchiro H, Kawamura K, Nagase H (2004) Chem Pharm Bull 52:747

    Article  CAS  Google Scholar 

  125. Fujii H, Narita M, Mizoguchi H, Hirokawa J, Kawai K, Tanaka T, Tseng LF, Nagase H (2004) Bioorg Med Chem Lett 14:4241

    Article  CAS  Google Scholar 

  126. Nagase H, Oso Y, Nemoto T, Fujii H, Imai M, Nakamura T, Kanemasa T, Kato A, Gouda H, Hirono S (2009) Bioorg Med Chem Lett 19:2792

    Article  CAS  Google Scholar 

  127. Fujii H, Ogawa R, Ohata K, Nemoto T, Nakajima M, Hasebe K, Mochizuki H, Nagase H (2009) Bioorg Med Chem 17:5983

    Article  CAS  Google Scholar 

  128. Nagase H, Watanabe A, Nemoto T, Yamaotsu N, Hayashida K, Nakajima M, Hasebe K, Nakao K, Mochizuki H, Hirono S, Fujii H (2010) Bioorg Med Chem Lett 20:121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Institute of Instrumental Analysis of Kitasato University, School of Pharmacy for its facilities. We also acknowledge the financial support from Grant-in-Aid for Scientific Research and the Uehara Memorial Foundation and the Shorai Foundation for Science and Technology. We reused some content from [16] (Copyright (2006)), [23] (Copyright (2007)), [26] (Copyright (2008)), [43] (Copyright (2008)), [45] (Copyright (2010)), [87] (Copyright (2009)), [92] (Copyright (2009)), and [97] (Copyright (2009)) with permission from the American Chemical Society or Elsevier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Nagase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nagase, H., Fujii, H. (2010). Synthesis of Novel Basic Skeletons Derived from Naltrexone. In: Nagase, H. (eds) Chemistry of Opioids. Topics in Current Chemistry, vol 299. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2010_75

Download citation

Publish with us

Policies and ethics