Skip to main content

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 298))

Abstract

Electron transmission through chiral molecules induced by circularly polarized light can be very different for mirror image structures. This behavior is described in terms of current transfer: the transfer of both charge and momentum. We review recent theoretical developments on the theory of current transfer and discuss related experimental studies of electron transmission through chiral molecular structures adsorbed on surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Au photoelectrons are spin polarized due to the high spin-orbit coupling of the metal. Therefore, an alternative mechanism for the transmission asymmetry obseved in [36] could be based on changes in the photoelectron spin angular momentum. We do not attribute the yield asymmetry to spin polarization because the stearoyl-lysine monolayers in [36] contain only low atomic number atoms that do not scatter spin.

References

  1. Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265

    Article  CAS  Google Scholar 

  2. Jortner J, Ratner MA (1997) Molecular electronics. Blackwell Science, Oxford

    Google Scholar 

  3. Kuznetsov AM, Ulstrup J (1999) Electron transfer in chemistry and biology. Wiley, Chichester, UK

    Google Scholar 

  4. Jortner J, Bixon M (eds) (1999) Electron transfer: from isolated molecules to biomolecules, vol 106–107, Advances in chemical physics series. Wiley Interscience, New York

    Google Scholar 

  5. May V, Kuhn O (2000) Charge and energy transfer dynamics in molecular systems. Wiley-VCH, Berlin

    Google Scholar 

  6. Balzani V (ed) (2001) Electron transfer in chemistry, vol 1–5. Wiley-VCH, Weinheim

    Google Scholar 

  7. Nitzan A (2006) Chemical dynamics in condensed phases. Oxford University Press, Oxford

    Google Scholar 

  8. Skourtis SS, Waldeck DH, Beratan DN (2010) Annu Rev Phys Chem 71:461

    Article  Google Scholar 

  9. Beratan DN, Skourtis SS, Balabin IA, Balaeff B, Keinan S, Venkatramani R, Xiao D (2009) Acc Chem Res 42:1669

    Article  CAS  Google Scholar 

  10. Hod O, Rabani E, Baer R (2006) Acc Chem Res 39:109

    Article  CAS  Google Scholar 

  11. Galperin M, Nitzan A (2005) Phys Rev Lett 95:206802

    Article  Google Scholar 

  12. Galperin M, Nitzan A (2006) J Chem Phys 124:234709

    Article  Google Scholar 

  13. Pfeifer T (2006) Nat Phys 2:297

    Article  CAS  Google Scholar 

  14. Silberberg Y (2004) Nature 430:624

    Article  CAS  Google Scholar 

  15. Marangos JP (2005) Nature 435:435

    Article  CAS  Google Scholar 

  16. Hentschel M, Kienberger R, Spielmann Ch, Reider GA, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F (2001) Nature 414:509

    Article  CAS  Google Scholar 

  17. Niikura H, Légaré F, Hasbani R, Bandrauk AD, Yu Ivanov M, Villeneuve DM, Corkum PB (2002) Nature 417:917

    Article  CAS  Google Scholar 

  18. Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Krausz F (2002) Nature 419:803

    Article  CAS  Google Scholar 

  19. Niikura H, Légaré F, Hasbani R, Yu Ivanov M, Villeneuve DM, Corkum PB (2003) Nature 421:826

    Article  CAS  Google Scholar 

  20. Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer JC, Corkum PB, Villeneuve PB (2004) Nature 432:867

    Article  CAS  Google Scholar 

  21. Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Drescher M, Krausz F (2004) Nature 427:817

    Article  CAS  Google Scholar 

  22. Goulielmakis E, Uiberacker M, Kienberger R, Baltuska A, Yakovlev V, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Drescher M, Krausz F (2004) Science 305:1267

    Article  CAS  Google Scholar 

  23. Suzuki T, Minemoto S, Kanai T, Sakai H (2004) Phys Rev Lett 92:133005

    Article  Google Scholar 

  24. Brixner T, Krampert G, Pfeifer T, Selle R, Gerber G, Wollenhaupt M, Graefe O, Horn C, Liese D, Baumert T (2004) Phys Rev Lett 92:208301

    Article  CAS  Google Scholar 

  25. Itatani J, Zeidler D, Levesque J, Spanner M, Villeneuve DM, Corkum PB (2005) Phys Rev Lett 94:123902

    Article  CAS  Google Scholar 

  26. Kanai T, Minemoto S, Sakai H (2005) Nature 435:470

    Article  CAS  Google Scholar 

  27. Mauritsson J, Johnsson P, Mansten E, Swoboda M, Ruchon T, L’Huillier A, Schafer KJ (2008) Phys Rev Lett 100:073003

    Article  CAS  Google Scholar 

  28. Niikura H, Villeneuve DM, Corkum PB (2005) Phys Rev Lett 94:083003

    Article  Google Scholar 

  29. Barth I, Manz J, Serrano-Andrés L (2008) Chem Phys 347:263

    Article  CAS  Google Scholar 

  30. Barth I, Manz J, Shigeta Y, Yagi K (2006) J Am Chem Soc 128:7043

    Article  CAS  Google Scholar 

  31. Barth I, Manz J (2006) Angew Chem Int Ed 45:2962

    Article  CAS  Google Scholar 

  32. Nobusada K, Yabana K (2007) Phys Rev A 75:032518

    Article  Google Scholar 

  33. Lazzerreti P (2000) Prog Nucl Magn Reson Spectros 36:1–88

    Article  Google Scholar 

  34. Steiner E, Fowler PW (2001) J Phys Chem A 105:9553

    Article  CAS  Google Scholar 

  35. Steiner E, Soncini A, Fowler PW (2006) J Phys Chem A 110:12882

    Article  CAS  Google Scholar 

  36. Ray K, Ananthavel SP, Waldeck DH, Naaman R (1999) Science 283:814

    Article  CAS  Google Scholar 

  37. Wei JJ, Schafmeister C, Bird G, Paul A, Naaman R, Waldeck DH (2006) J Phys Chem B 110:1301

    Article  CAS  Google Scholar 

  38. Skourtis SS, Beratan DN, Naaman R, Nitzan A, Waldeck DH (2008) Phys Rev Lett 101:238103

    Article  Google Scholar 

  39. Ben-Moshe V, Nitzan A, Skourtis SS, Beratan DN (2010) J Phys Chem C 114:8005

    Article  CAS  Google Scholar 

  40. Ben-Moshe V (2009) Calculations of electronic conduction properties of molecular junctions. PhD Thesis, Tel Aviv University

    Google Scholar 

  41. Güdde J, Rohleder M, Meier T, Koch SW, Höfer U (2007) Science 318:1287

    Article  Google Scholar 

  42. Naaman R, Sanche L (2007) Chem Rev 107:1553

    Article  CAS  Google Scholar 

  43. Segal D, Nitzan A (2001) Chem Phys 268:315

    Article  CAS  Google Scholar 

  44. Segal D, Nitzan A (2002) Chem Phys 281:235

    Article  CAS  Google Scholar 

  45. Solomon GC, Andrews DQ, Hansen T, Goldsmith RH, Wasielewski MR, Duyne RPV, Ratner MA (2008) J Chem Phys 129:054701

    Article  Google Scholar 

  46. Andrews DQ, Solomon DC, Goldsmith RH, Hansen T, Wasielewski MR, Duyne RPV, Ratner MA (2008) J Phys Chem C 112:16991

    Article  CAS  Google Scholar 

  47. Ke SH, Yang WT, Baranger HU (2008) Nano Lett 8:3257

    Article  CAS  Google Scholar 

  48. Begemann G, Darau D, Donarini A, Grifoni M (2008) Phys Rev B 77:201406

    Article  Google Scholar 

  49. Donarini A, Begemann G, Grifoni M (2009) Nano Lett 9:2897

    Article  CAS  Google Scholar 

  50. Xiao DQ, Skourtis SS, Rubtsov IV, Beratan DN (2009) Nano Lett 9:1818

    Article  CAS  Google Scholar 

  51. Ernzerhof M, Bahmann H, Goyer F, Zhuang M, Rocheleau PJ (2006) Chem Theor Comput 2:1291

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation (CHE-1012357, DNB), the Israel Science Foundation, the German-Israel Foundation and the ERC and the US-Israel Binational Science Foundation (AN), the University of Cyprus (SSS) and the Israel Minisry of Science for a fellowship received under the program for Progressing Women in Science (VBM).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ben-Moshe, V., Beratan, D.N., Nitzan, A., Skourtis, S.S. (2010). Chiral Control of Current Transfer in Molecules. In: Naaman, R., Beratan, D., Waldeck, D. (eds) Electronic and Magnetic Properties of Chiral Molecules and Supramolecular Architectures. Topics in Current Chemistry, vol 298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2010_101

Download citation

Publish with us

Policies and ethics