Skip to main content

Ionic Liquids from Theoretical Investigations

  • Chapter
  • First Online:
Ionic Liquids

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 290))

Abstract

Theoretical investigations of ionic liquids are reviewed. Three main cate-gories are discussed, i.e., static quantum chemical calculations (electronic structure methods), traditional molecular dynamics simulations and first-principles molecular dynamics simulations. Simple models are reviewed in brief.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

σ :

Hard-sphere diameter

ε 0 :

Dielectric permittivity

μA :

Chemical potential of substance A

∆E :

Energy difference, adiabatic interaction energy

\(\Delta E_{{\rm{diss}}}^{{\rm{cp}}}\) :

Dissociation energy counterpoise corrected, adiabatic interaction energy counterpoise corrected

∆E diss :

Dissociation energy, adiabatic interaction energy

∆G solv :

Solvation free energies

∆h vap :

Molar enthalpy of vaporization

μi :

Dipole moment

[BF4]− :

Tetrafluoroborate

[Cn Cnim]+ :

1-Alkyl-3-alkyl imidazolium

[Cnmim]+ :

1-Alkyl-3-methyl imidazolium

[DCA]− :

Dicyanamide

[DMFH]+ :

N,N′ -Dimethylformamide cation

[EtSO4]− :

Ethylsulfate

[FeCl4]− :

Tetrachloroferrate

[FS(O2)2N]− :

Bis(fluorosulfonyl)imide

[L]− :

Lactate

[MeSO4]− :

Methylsulfate

[Nabcd]+ :

Ammonium with a–d different alkyl-chains

[NO3]− :

Nitrate

[NTf2]− = [TFSI]− :

Bis(trifluoromethylsulfonyl)imide

[P14]+ :

N-Butyl-N-methyl-pyrrolidinium

[PF6]− :

Hexafluorophosphate

[PSPy]+ :

N-Propane sulfonic acid pyridinium

[pTSA]− :

p-Toluenesulfonic acid anion

[SCN]− :

Thiocyanite

[TfO]− = [CF3SO3]− :

Triflate, trifluoromethanesulfonate

[TMG]+ :

1,1,3,3-Tetramethylguanidinium

< >:

Ensemble average

AIMD:

Ab initio molecular dynamics; molecular dynamics with electronic structure calculations on the fly; see also FPMD and [1]

AMI:

Semiempirical model; see [2]

CNDO:

Complete neglect of differential overlap; semiempirical method; see [2]

DFT:

Density functional theory; static quantum chemical method using functionals of the electronic density to account for electron correlation; see [2]

e :

Electronic charge

FPMD:

First-principles molecular dynamics; see AIMD

HĤ :

Hamilton operator

H :

Solvent interaction energy of a hybrid molecule

HF:

Hartree–Fock; static quantum chemical method neglecting electron correlation per definition; see [2]

IL:

Ionic liquid

MC:

Monte-Carlo (simulations); see [3]

MD:

Molecular dynamics (simulations); dynamical description based on classical mechanics; see [4]

MP2:

Second-order Moller–Plesset perturbation theory; correlated static quantum chemical method; see [2]

NEMD:

Non-equilibrium molecular dynamics

NPA:

Natural population analysis

NPT:

NPT ensemble: isothermal–isobaric ensemble; constant particle (N), pressure (P), and temperature (T) simulation

PES:

Potential energy surface

PIL:

Protic ionic liquids

PM3:

Semiempirical method; see [2]

QC:

Quantum chemical

QM/MM:

Hybrid quantum-mechanical/molecular-mechanical calculations

QSAR:

Quantitative structure activity relationships

RDF:

Radial distribution functions, these functions reflect the structure of a liquid

u :

Molar internal energy

References

  1. Thar J, Reckien W, Kirchner B (2007) Atomistic approaches in modern biology. Topics in Current Chemistry, vol 268. Springer, Berlin Heidelberg New York, pp 133–171

    Google Scholar 

  2. Jensen F (2007) Introduction to computational chemistry. Wiley, Chichester

    Google Scholar 

  3. Frenkel D, Smit B (2002) Understanding molecular simulations. Academic, San Diego

    Google Scholar 

  4. Allen MP, Tildesley DJ (1987) Computer simulations of liquids. Claredon, Oxford

    Google Scholar 

  5. Cocalia VA, Gutowski KE, Rogers RD (2006) Coord Chem Rev 150:755–764

    Google Scholar 

  6. Welton T (1999) Chem Rev 99:2071–2083

    CAS  Google Scholar 

  7. Welton T (2004) Coord Chem Rev 248:2459–2477

    CAS  Google Scholar 

  8. Wilkes JS (2002) Green Chem 4:73–80

    CAS  Google Scholar 

  9. Lynden-Bell RM, Atamas NA, Vasilyuk A, Hanke CG (2002) Mol Phys 100:3225–3229

    CAS  Google Scholar 

  10. Cammarata L, Kazarian SG, Salter PA, Welton T (2001) Phys Chem Chem Phys 3: 5192–5200

    CAS  Google Scholar 

  11. Price SL, Hanke CG, Lynden-Bell RM (2001) Mol Phys 99:801–809

    Google Scholar 

  12. Shah JK, Brennecke JF, Maginn EJ (2002) Green Chem 4:112–118

    CAS  Google Scholar 

  13. Morrow TI, Maginn EJ (2002) J Phys Chem B 106:12161–12164

    Google Scholar 

  14. de Andrade J, Boes ES, Strassen H (2002) J Phys Chem B 106:3546–3548

    CAS  Google Scholar 

  15. Meng Z, Dölle A, Carper WR (2002) J Mol Struct 585:119–128

    CAS  Google Scholar 

  16. Hunt PA (2006) Mol Simul 32:1–10

    CAS  Google Scholar 

  17. Maginn EJ (2007) Acc Chem Res 40:1200–1207

    CAS  Google Scholar 

  18. Lynden-Bell RM, Del Pápolo MG, Youngs TGA, Kohanoff J, Hanke CG, Harper JB, Pinilla CC (2007) Acc Chem Res 40:1138–1145

    CAS  Google Scholar 

  19. Bhargava BL, Balasubramanian S, Klein ML (2008) Chem Commun 29:3339–3351

    Google Scholar 

  20. Matsumoto K, Hagiwara R (2006) J Fluorine Chem 128:317–331

    Google Scholar 

  21. Kirchner B (2007) Phys Rep 1–3:1–111

    Google Scholar 

  22. Szabo A, Ostlund NS (1996) Modern quantum chemistry. Dover, NY, USA

    Google Scholar 

  23. Halgren TA, Damm W (2001) Curr Opin Biol 11:236–242

    CAS  Google Scholar 

  24. Huber H, Dyson AJ, Kirchner B (1999) Chem Soc Rev 28:121–133

    CAS  Google Scholar 

  25. Car R, Parrinello M (1985) Phys Rev Lett 55:2471–2474

    CAS  Google Scholar 

  26. Peyerimhoff SD (2003) Interactions in molecules, 1st edn. Wiley, Weinheim

    Google Scholar 

  27. Emel’yanenko VN, Verevkin SP, Heintz A (2007) J Am Chem Soc 129:3930–3937

    Google Scholar 

  28. Zahn S, Kirchner B (2008) J Phys Chem A 112:8430–8435

    CAS  Google Scholar 

  29. Studzińska S, Stepnowskib P, Buszewski B (2007) QSAR Comb Sci 26:963–972

    Google Scholar 

  30. Hunt PA, Kirchner B, Welton T (2006) Chem Eur J 12:6762–6775

    CAS  Google Scholar 

  31. Lü R, Cao Z, Shen G (2007) J Natur Gas Chem 16:428–436

    Google Scholar 

  32. Hunt PA, Gould IR, Kirchner B (2007) Aust J Chem 60:9–14

    CAS  Google Scholar 

  33. Köddermann T, Wertz C, Heintz A, Ludwig R (2006) Chem Phys Chem 7:1944–1949

    Google Scholar 

  34. Dhumal NR (2007) Chem Phys 342:245–252

    CAS  Google Scholar 

  35. Fujii K, Seki S, Fukuda S, Kanzaki R, Toshiyuki Takamuku YU, Ishiguro S (2007) J Phys Chem B 111:12829–12833

    CAS  Google Scholar 

  36. Lasségues JC, Grondin J, Holomb R, Johansson P (2007) J Raman Spectrosc 38:551–558

    Google Scholar 

  37. Nockemann P, Thijs B, Pittois S, Thoen J, Glorieux C, Van Hecke K, Van Meervelt L, Kirchner B, Binnemans K (2006) J Phys Chem B 110:20978–20992

    CAS  Google Scholar 

  38. Chang H-C, Jiang J-C, Su J-C, Chang C-Y, Lin SH (2007) J Phys Chem A 111:9201–9206

    CAS  Google Scholar 

  39. Chiu Y-H, Gaeta G, Levandier D, Dressler R, Boatz J (2007) Int J Mass Spectrom 265:146–158

    CAS  Google Scholar 

  40. Paulechka YU, Kabo GJ, Blokhin A, Magee OAVJW, Frenkel M (2003) J Chem Eng Data 48:457–462

    CAS  Google Scholar 

  41. Zhang L, Li H, Wang Y, Hu X (2007) J Phys Chem B 111:11016–11020

    CAS  Google Scholar 

  42. Johansson KM, Izgorodina EI, Forsyth M, MacFarlane DR, Seddon KR (2008) Phys Chem Chem Phys 10:2972–2978

    CAS  Google Scholar 

  43. Fujimori T, Fujii K, Kanzaki R, Chiba K, Yamamoto H, Umebayashi Y, Ishiguro S (2007) J Mol Liq 131/132:216–224

    Google Scholar 

  44. Nockemann P, Thijs B, Driesen K, Van Hecke CJK, Van Meervelt L, Kossmann S, Kirchner B, Binnemans K (2007) J Phys Chem B 111:5254–5263

    CAS  Google Scholar 

  45. Yu G, Zhang S (2007) J Fluid Phase Equilib 255:86–92

    CAS  Google Scholar 

  46. Xing H, Wang T, Zhou Z, Dai Y (2007) J Mol Cat A 264:53–59

    CAS  Google Scholar 

  47. Bhargava BL, Balasubramanian S (2007) Chem Phys Lett 444:242–246

    CAS  Google Scholar 

  48. Gong L, Guo W, Xiong J, Li R, Wu X, Li W (2006) Chem Phys Lett 425:167–178

    CAS  Google Scholar 

  49. Wang Y, Li H, Han S (2006) J Phys Chem B 110:24646–24651

    CAS  Google Scholar 

  50. Li W, Qi C, Wu X, Rong H, Gong L (2008) J Mol Struct 855:34–39

    CAS  Google Scholar 

  51. Weber CF, Puchta R, van Eikema Hommes NJR, Wasserscheid P, van Eldik R (2005) Angew Chem Int Ed Engl 44:6033–6038

    CAS  Google Scholar 

  52. Kossmann S, Thar J, Kirchner B, Hunt PA, Welton T (2006) J Chem Phys 124:174506

    Google Scholar 

  53. Weingärtner H (2008) Angew Chem Int Ed Engl 47:654–670

    Google Scholar 

  54. Bhargava BL, Balasubramanian S (2007) J Chem Phys 127:114510

    CAS  Google Scholar 

  55. Ludwig R (2008) Phys Chem Chem Phys 10:4333–4339

    CAS  Google Scholar 

  56. Tsuzuki S, Tokuda H, Hayamizu K, Watanabe M (2005) J Phys Chem B 109:16474–16481

    CAS  Google Scholar 

  57. Tsuzuki S, Arai AA, Nishikawa K (2008) J Phys Chem B 112:7739–7747

    CAS  Google Scholar 

  58. Zahn S, Uhlig F, Thar J, Spickermann C, Kirchner B (2008) Angew Chem Int Ed Engl 47:3639–3641

    CAS  Google Scholar 

  59. Hunt PA, Gould IR (2006) J Phys Chem A 110:2269–2282

    CAS  Google Scholar 

  60. Canongia-Lopes JN, Deschamps J, Pádua AAH (2004) J Phys Chem B 108:2038–2047

    Google Scholar 

  61. Müller-Plathe F, van Gunsteren WF (1995) J Phys Chem 103:4756–4756

    Google Scholar 

  62. Bhargava BL, Balasubramanian S (2005) J Chem Phys 123:144505

    CAS  Google Scholar 

  63. Bhargava BL, Balasubramanian S (2006) J Chem Phys 125:219901

    Google Scholar 

  64. Bhargava BL, Klein ML, Balasubramanian S (2008) Chem Phys Chem 9:67–70

    CAS  Google Scholar 

  65. Schröder C, Steinhauser O (2008) J Chem Phys 128:224503

    Google Scholar 

  66. Youngs TGA, Hardacre C (2008) Chem Phys Chem 9:1548–1558

    CAS  Google Scholar 

  67. Lynden-Bell RM, Youngs TGA (2006) Mol Sim 32:1025–1033

    CAS  Google Scholar 

  68. Denesyuk NA, Weeks JD (2008) J Chem Phys 128:124109

    Google Scholar 

  69. Bagno A, D’Amico F, Saielli G (2007) J Mol Liq 131/132:17–23

    Google Scholar 

  70. Bhargava BL, Balasubramanian S (2006) Chem Phys Lett 417:486–491

    CAS  Google Scholar 

  71. Micaelo NM, Baptista AM, Soares CM (2006) J Phys Chem B 110:14444–14451

    CAS  Google Scholar 

  72. Youngs TGA, Del Pápolo MG, Kohanoff J (2006) J Phys Chem B 110:5697–5707

    CAS  Google Scholar 

  73. Canongia-Lopes JN, Pádua AAH (2006) J Phys Chem B 110:19586–19592

    CAS  Google Scholar 

  74. Canongia-Lopes JN, Pádua AAH, Shimizu K (2008) J Phys Chem B 112:5039–5046

    CAS  Google Scholar 

  75. Kelkar MS, Maginn EJ (2007) J Phys Chem B 111:4867–4876

    CAS  Google Scholar 

  76. Prado CER, Freitas LCGF (2007) J Mol Struct 847:93–100

    Google Scholar 

  77. Brenneman CM, Wiberg KB (1990) J Comp Chem 11:361

    Google Scholar 

  78. Jayaraman S, Maginn EJ (2007) J Chem Phys 127:214504

    Google Scholar 

  79. Cadena C, Maginn EJ (2006) J Phys Chem B 110:18026–18039

    CAS  Google Scholar 

  80. Kelkar MS, Maginn EJ (2007) J Phys Chem B 111:9424–9427

    CAS  Google Scholar 

  81. Köddermann T, Paschek D, Ludwig R (2008) Chem Phys Chem 9:549–555

    Google Scholar 

  82. Rey-Castro C, Vega LF (2006) J Phys Chem B 110:14426–14435

    CAS  Google Scholar 

  83. Zhao W, Balasubramanian FLS, Müller-Plathe F (2008) J Phys Chem B 112:8129–8133

    CAS  Google Scholar 

  84. Shim Y, Jeong D, Choi MY, Kim HJ (2006) J Chem Phys 125:061102

    Google Scholar 

  85. Qiao B, Krekeler C, Berger R, Delle Site L, Holm C (2008) J Phys Chem B 112:1743–1751

    CAS  Google Scholar 

  86. Schröder C, Rudas T, Steinhauser O (2006) J Chem Phys 125:244506

    Google Scholar 

  87. Schröder C, Wakai C, Weingärtner H, Steinhauser O (2007) J Chem Phys 126:084511

    Google Scholar 

  88. Schröder C, Rudas T, Neumayr G, Gansterer W, Steinhauser O (2007) J Chem Phys 127: 044505

    Google Scholar 

  89. Schröder C, Haberler M, Steinhauser O (2008) J Chem Phys 128:134501

    Google Scholar 

  90. Wasserscheid E, Welton T (2003) Ionic liquids in synthesis. Wiley, Weinheim

    Google Scholar 

  91. Hunt PA (2007) J Phys Chem B 111:4844–4853

    CAS  Google Scholar 

  92. Zahn S, Bruns G, Thar J, Kirchner B (2008) Phys Chem Chem Phys, 10: 6921–6924

    CAS  Google Scholar 

  93. Shim Y, Jeong D, Choi MY, Kim HJ (2006) J Chem Phys 125:024507

    Google Scholar 

  94. Jeong D, Shim Y, Choi MY, Kim HJ (2007) J Phys Chem B 111:4920–4925

    CAS  Google Scholar 

  95. Hu Z, Margulis CJ (2007) J Phys Chem B 111:4705–4714

    CAS  Google Scholar 

  96. Hanke CG, Lynden-Bell RM (2003) J Phys Chem B 107:10873–10878

    CAS  Google Scholar 

  97. Chevrot G, Schurhammer R, Wipff G (2006) Phys Chem Chem Phys 8:4166–4174

    CAS  Google Scholar 

  98. Annapureddy HVR, Hu Z, Xia J, Margulis CJ (2008) J Phys Chem B 112:1770–1776

    CAS  Google Scholar 

  99. Jiang W, Wang Y, Voth GA (2007) J Phys Chem B 111:4812–4818

    CAS  Google Scholar 

  100. Sieffert N, Wipff G (2006) J Phys Chem B 110:13076–13085

    CAS  Google Scholar 

  101. Schröder C, Rudas T, Neumayr G, Benkner S, Steinhauser O (2007) J Chem Phys 127:234503

    Google Scholar 

  102. Costa LT, Ribeiro MCC (2006) J Chem Phys 124:184902

    Google Scholar 

  103. Costa LT, Ribeiro MCC (2007) J Chem Phys 127:164901

    Google Scholar 

  104. Costa LT, Lavall RL, Borges RS, Rieumont J, Silva GG, Ribeiro MC (2007) Electrochim Acta 53:1568–1574

    CAS  Google Scholar 

  105. Sloutskin E, Lynden-Bell RM, Balasubramanian S, Deutsch M (2006) J Chem Phys 125:174715

    CAS  Google Scholar 

  106. Bresme F, González-Melchor M, Alejandre J (2005) J Phys Condens Matter 17:S3301–S3307

    CAS  Google Scholar 

  107. Yan T, Li S, Jiang W, Gao X, Xiang B, Voth GA (2006) J Phys Chem B 110:1800–1806

    CAS  Google Scholar 

  108. Lynden-Bell RM, Del Pópolo MG (2006) Phys Chem Chem Phys 8:949–954

    CAS  Google Scholar 

  109. Liu L, Li S, Cao Z, Peng Y, Li G, Yan T, Gao X-P (2007) J Phys Chem C 111: 12161–12164

    CAS  Google Scholar 

  110. Sieffert N, Wipff G (2007) J Phys Chem B 111:7253–7266

    CAS  Google Scholar 

  111. Pinilla C, Del Pópolo MG, Kohanoff J, Lynden-Bell RM (2007) J Phys Chem B 111:4877–4884

    CAS  Google Scholar 

  112. Reed SK, Lanning OJ, Madden PA (2007) J Chem Phys 126:084704

    Google Scholar 

  113. Reed SK, Madden PA, Papadopoulos A (2008) J Chem Phys 128:124701

    Google Scholar 

  114. Lynden-Bell RM, Kohanoff J, Del Pópolo MG (2005) Faraday Discuss 129:57–67

    CAS  Google Scholar 

  115. Lynden-Bell RM (2007) J Phys Chem B 111:10800–10806

    CAS  Google Scholar 

  116. Lynden-Bell RM (2007) Electrochem Commun 9:1857–1861

    CAS  Google Scholar 

  117. Gaillard C, Chaumont A, Billard I, Hennig C, Ouadi A, Wipff G (2007) Inorg Chem 46: 4815–4826

    CAS  Google Scholar 

  118. Chaumont A, Wipff G (2006) New J Chem 30:537–545

    CAS  Google Scholar 

  119. Sieffert N, Wipff G (2007) J Phys Chem B 111:4951–4962

    CAS  Google Scholar 

  120. Chaumont A, Wipff G (2006) Phys Chem Chem Phys 8:494–502

    CAS  Google Scholar 

  121. Schurhammer R, Wipff G (2007) J Phys Chem B 111:4659–4668

    CAS  Google Scholar 

  122. Harper JB, Lynden-Bell RM (2004) Mol Phys 102:85–94

    CAS  Google Scholar 

  123. Youngs TGA, Hardacre C, Holbrey JD (2007) J Phys Chem B 111:13765–13774

    CAS  Google Scholar 

  124. Micaelo NM, Soares CM (2008) J Phys Chem B 112:2566–2572

    CAS  Google Scholar 

  125. Huang X, Margulis CJ, Li Y, Berne BJ (2005) J Am Chem Soc 127:17842–17851

    CAS  Google Scholar 

  126. Wang Y, Pan H, Li H, Wang C (2007) J Phys Chem B 111:10461–10467

    CAS  Google Scholar 

  127. Siqueira LJA, Ando RA, Bazito FFC, Torresi RM, Santos PS, Ribeiro MCC (2008) J Phys Chem B 112:6430–6435

    CAS  Google Scholar 

  128. Lynden-Bell RM (2003) Mol Phys 101:2625–2633

    CAS  Google Scholar 

  129. Bhargava BL, Balasubramanian S (2006) J Am Chem Soc 128:10073–10078

    CAS  Google Scholar 

  130. Shim Y, Kim HJ (2008) J Phys Chem B 112:2637–2643

    CAS  Google Scholar 

  131. Shim Y, Kim HJ (2007) J Phys Chem B 111:4510–4519

    CAS  Google Scholar 

  132. Siqueira LJA, Ribeiro MCC (2007) J Phys Chem B 111:11776–11785

    CAS  Google Scholar 

  133. Jiang W, Yan T, Wang Y, Voth GA (2008) J Phys Chem B 112:3121–3131

    CAS  Google Scholar 

  134. Borodin O, Smith GD (2006) J Phys Chem B 110:11481–11490

    CAS  Google Scholar 

  135. Canongia-Lopes JN, Shimizu K, Pádua AAH, Umebayashi Y, Fukuda S, Fujii K, Ishiguro S (2008) J Phys Chem B 112:1465–1472

    CAS  Google Scholar 

  136. Bresme F, Alejandre J (2003) J Chem Phys 118:4134–4139

    CAS  Google Scholar 

  137. Shi W, Maginn EJ (2008) J Phys Chem B 112:2045–2055

    CAS  Google Scholar 

  138. Del Pápoloand RM, Lynden-Bell MG, Kohanoff J (2005) J Phys Chem B 109:5895–5902

    Google Scholar 

  139. Resende Prado CE, Del Pápolo MG, Youngs TGA, Kohanoff J, Lynden-Bell RM (2006) Mol Phys 194:2477–2483

    Google Scholar 

  140. Del Pápolo MG, Kohanoff J, Lynden-Bell RM (2006) J Phys Chem B 110:8798–8803

    Google Scholar 

  141. Bagno A, D’Amico F, Saielli G (2007) Chem Phys Chem 8:873–881

    CAS  Google Scholar 

  142. Ghatee MH, Ansari Y (2007) J Chem Phys 126:154502

    Google Scholar 

  143. Spickermann C, Thar J, Lehmann SBC, Zahn S, Hunger J, Buchner R, Hunt PA, Welton T, Kirchner B (2008) J Chem Phys 129:104505

    CAS  Google Scholar 

  144. Kirchner B, Seitsonen AP (2007) Inorg Chem 47:2751–2754

    Google Scholar 

  145. Bhargava BL, Balasubramanian S (2007) J Phys Chem B 111:4477–4487

    CAS  Google Scholar 

  146. Bhargava BL, Balasubramanian S (2008) Bull Mater Sci 31:327–334

    CAS  Google Scholar 

  147. Bhargava BL, Balasubramanian S (2008) J Phys Chem B 112:7566–7573

    CAS  Google Scholar 

  148. Bagno A, D’Amico F, Saielli G (2006) J Phys Chem B 110:23004–23006

    CAS  Google Scholar 

  149. Arantesa GM, Ribeiro MCC (2008) J Chem Phys 128:114503

    Google Scholar 

  150. Krossing I, Slattery JM, Daguenet C, Dyson PJ, Oleinikova A, Weigärtner H (2006) J Am Chem Soc 128:13427–13434

    CAS  Google Scholar 

  151. Markusson H, Belieres J, Johansson P, Angell CA, Jacobsson P (2007) J Phys Chem A 111:8717–8723

    CAS  Google Scholar 

  152. Bhargava BL, Devane R, Klein ML, Balasubramanian S (2007) Soft Matter 3:1395–1400

    CAS  Google Scholar 

  153. Lou P, Kang S, Ko KC, Lee JY (2007) J Phys Chem B 111:13047–13051

    CAS  Google Scholar 

  154. Jacquemin J, Ge R, Nancarrow P, Rooney DW, Costa Gomes MF, Padua AAH, Hardacre C (2008) J Chem Eng Data 53:716–726

    CAS  Google Scholar 

  155. Matsuda H, Yamamotob H, Kurihara K, Tochigi K (2007) J Fluid Phase Equilib 261:434–443

    CAS  Google Scholar 

  156. Abbott AP, Harris RC, Ryder KS (2007) J Phys Chem B 111:4910–4913

    CAS  Google Scholar 

  157. Freire MG, Neves CMSS, Carvalho PJ, Fernandes AM, Gardas RL, Marrucho IM, Santos LMNBF, Coutinho JAP (2007) J Phys Chem B 111:13082–13089

    CAS  Google Scholar 

  158. Palomar J, Ferro VR, Torrecilla JS, Rodriguez F (2007) Ind Eng Chem Res C 46:6041–6048

    CAS  Google Scholar 

  159. Rogers EI, Silvester DS, Jones SEW, Aldous L, Hardacre C, Russell AJ, Davies SG, Compton RG (2007) J Phys Chem C 111:13957–13966

    CAS  Google Scholar 

  160. Kobrak MN (2008) Green Chem 10:80–86

    CAS  Google Scholar 

  161. Weiss VC, Schröer W (2008) J Stat Mech P04020

    Google Scholar 

  162. Schröer W (2006) J Mol Liq 125:164–173

    Google Scholar 

Download references

Acknowledgment

This work was supported by the DFG, in particular by the ERA Chemistry Program and by the SPP-1191 Program. Computer time from the RZ Leipzig, the HLRS Stuttgart and NIC Jülich is gratefully acknowledged. I would furthermore like to thank the following individuals for helpful suggestions and discussions: Christian Spickermann and Dietmar Dath.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Kirchner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kirchner, B. (2008). Ionic Liquids from Theoretical Investigations. In: Kirchner, B. (eds) Ionic Liquids. Topics in Current Chemistry, vol 290. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2008_36

Download citation

Publish with us

Policies and ethics