Skip to main content

Thermophysical Properties of Ionic Liquids

  • Chapter
  • First Online:
Ionic Liquids

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 290))

Abstract

Low melting point salts which are often classified as ionic liquids have received significant attention from research groups and industry for a range of novel applications. Many of these require a thorough knowledge of the thermophysical properties of the pure fluids and their mixtures. Despite this need, the necessary experimental data for many properties is scarce and often inconsistent between the various sources. By using accurate data, predictive physical models can be developed which are highly useful and some would consider essential if ionic liquids are to realize their full potential. This is particularly true if one can use them to design new ionic liquids which maximize key desired attributes. Therefore there is a growing interest in the ability to predict the physical properties and behavior of ionic liquids from simple structural information either by using group contribution methods or directly from computer simulations where recent advances in computational techniques are providing insight into physical processes within these fluids. Given the importance of these properties this review will discuss the recent advances in our understanding, prediction and correlation of selected ionic liquid physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[NTf2] :

Bis(trifluoromethylsulfonyl)imide/Anions

[OTf] :

Trifluoromethanesulphonate

[C1SO4] :

Methylsulphate

[C2SO4] :

Ethylsulphate

[PF6] :

Hexafluorophosphate

[BF4] :

Tetrafluoroborate

[Methide] :

Tris(trifluoromethylsulfonyl)methide

[DCA] :

Dicyanamide

[FAP] :

Tris(perfluoroalkyl)trifluorophosphate

For cations, n represents the carbon number of the alkyl chain, i.e., ethyl = 2, butyl = 4, etc.

[C n mim]+ :

1-Alkyl-3-methylimidazolium

[C n mpy]+ :

Alkyl-1-methylpyridinium

[C n mpyr]+ :

1-Alkyl-1-methylpyrrolidinium

[P66614]+ :

Trihexyl-(tetradecyl)phosphonium

[CNpy]+ :

1-Cyanomethylpyridinium

[CNmpyr]+ :

1-Cyanomethyl-1-methylpyrrolidinium

References

  1. Wasserscheid P, Welton T (2003) Ionic liquids in synthesis. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  2. Pârvulescu VI, Hardacre C (2007) Catalysis in ionic liquids. Chem Rev 107:2615–2665

    Google Scholar 

  3. Silvester DS, Compton RG (2006) Electrochemistry in room temperature ionic liquids: a review and some possible applications. Z Phys Chem 220:1247–1274

    CAS  Google Scholar 

  4. Harper JB, Kobrak MN (2006) Understanding organic processes in ionic liquids: achievements so far and challenges remaining. Mini-Rev Org Chem 3:253–269

    Google Scholar 

  5. Qu J, Truhan JJ, Dai S et al. (2006) Ionic liquids with ammonium cations as lubricants or additives. Tribol Let 22:207–214

    Google Scholar 

  6. Holbrey JD (2007) Heat capacities of common ionic liquids – potential applications as thermal fluids? Chim Oggi – Chem Today 25:24–26.

    Google Scholar 

  7. Liu JF, Jonsson JA, Jiang GB (2005) Application of ionic liquids in analytical chemistry. Trac-Trends Anal Chem 24:20–27

    Google Scholar 

  8. Katritzky AR, Jain R, Lomaka A et al. (2002) Correlation of the melting points of potential ionic liquids (imidazolium bromides and benzimidazolium bromides) using the CODESSA program. J Chem Inf Comp Sci 42:225–231

    Google Scholar 

  9. Widegren JA, Wang YM, Henderson WA et al. (2007) Relative volatilities of ionic liquids by vacuum distillation of mixtures. J Phys Chem B 111:8959–8964

    Google Scholar 

  10. Earle MJ, Esperanca JMSS, Gilea MA et al. (2006) The distillation and volatility of ionic liquids. Nature 439:831–834

    Google Scholar 

  11. Hough WL, Smiglak M, Rodriguez H et al. (2007) The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem 31:1429–1436

    Google Scholar 

  12. Xue H, Twamley B, Shreeve JM (2005) Energetic salts of substituted 1,2,4-triazolium and tetrazolium 3,5-dinitro-1,2,4-triazolates. J Mat Chem 15:3459–3465

    Google Scholar 

  13. Fredlake CP, Crosthwaite JM, Hert DG et al. (2004) Thermophysical properties of imidazolium-based ionic liquids. J Chem Eng Data 49:954–964

    Google Scholar 

  14. Earle MJ, Katdare SP, Seddon KR (2004) Paradigm confirmed: the first use of ionic liquids to dramatically influence the outcome of chemical reactions. Org Let 6:707–710

    Google Scholar 

  15. Crowhurst L, Falcone R, Lancaster NL et al. (2006) Using Kamlet–Taft solvent descriptors to explain the reactivity of anionic nucleophiles in ionic liquids. J Org Chem 71:8847–8853

    Google Scholar 

  16. Dong Q, Muzny CD, Kazakov A et al. (2007) ILThermo: a free-access web database for thermodynamic properties of ionic liquids. J Chem Eng Data 52:1151–1159

    Google Scholar 

  17. Katritzky AR, Lomaka A, Petrukhin R et al. (2002) QSPR correlation of the melting point for pyridinium bromides, potential ionic liquids. J Chem Inf Comp Sci 42:71–74

    Google Scholar 

  18. Deetlefs M, Seddon KR, Shara M (2006) Predicting physical properties of ionic liquids. Phys Chem Chem Phys 8:642–649

    Google Scholar 

  19. Zhang SJ, Sun N, He XZ et al. (2006) Physical properties of ionic liquids: database and evaluation. J Phys Chem Ref Data 35:1475–1517

    Google Scholar 

  20. Tochigi K, Yamamoto H (2007) Estimation of ionic conductivity and viscosity of ionic liquids using a QSPR model. J Phys Chem C 111:15989–15994

    Google Scholar 

  21. Matsuda H, Yamamoto H, Kurihara K et al. (2007) Computer-aided reverse design for ionic liquids by QSPR using descriptors of group contribution type for ionic conductivities. Fluid Phase Equilib 261:434–443

    Google Scholar 

  22. Chopey NP (2004) Handbook of chemical engineering calculations. McGraw-Hill, New York

    Google Scholar 

  23. Dzyuba SV, Bartsch RA (2002) Influence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifluorormethyl-sulfonyl)imides on physical properties of the ionic liquids. Chem Phys Chem 3:161–166

    Google Scholar 

  24. Suarez PAZ, Einloft S, Dullius JEL et al. (1998) Synthesis and physical-chemical properties of ionic liquids based on 1-n-butyl-3-methylimidazolium cation. J Chim Phys-Chim Biol 95:1626–1639

    Google Scholar 

  25. Van Valkenburg ME, Vaughn RL, Williams M et al. (2005) Thermochemistry of ionic liquid heat-transfer fluids. Thermochim Acta 425:181–188

    Google Scholar 

  26. Ngo HL, LeCompte K, Hargens L et al. (2000) Thermal properties of imidazolium ionic liquids. Thermochim Acta 357:97–102

    Google Scholar 

  27. Yamanaka N, Kawano R, Kubo W et al. (2007) Dye-sensitized TiO2 solar cells using imidazolium-type ionic liquid crystal systems as effective electrolytes. J Phys Chem B 111:4763–4769

    Google Scholar 

  28. Gordon CM, Holbrey JD, Kennedy AR et al. (1998) Ionic liquid crystals: hexafluorophosphate salts. J Mat Chem 8:2627–2636

    Google Scholar 

  29. Eike DM, Brennecke JF, Maginn EJ (2003) Predicting melting points of quaternary ammonium ionic liquids. Green Chem 5:323–328

    Google Scholar 

  30. Carrera G, Aires-de-Sousa J (2005) Estimation of melting points of pyridinium bromide ionic liquids with decision trees and neural networks. Green Chem 7:20–27

    Google Scholar 

  31. Charton, M, Charton B (1994) Quantitative description of structural effects on melting-points of substituted alkanes. J Phys Org Chem 7:196–206

    Google Scholar 

  32. Trohalaki S, Pachter R, Drake GW et al (2005) Quantitative structure-property relationships for melting points and densities of ionic liquids. Energ Fuels 19:279–284

    Google Scholar 

  33. López-Martin I, Burello E, Davey PN et al. (2007) Anion and cation effects on imidazolium salt melting points: a descriptor modelling study. Chem Phys Chem 8:690–695

    Google Scholar 

  34. Alavi S, Thompson DL (2005) Molecular dynamics studies of melting and some liquid-state properties of 1-ethyl-3-methylimidazolium hexafluorophosphate [emim][PF6]. J Chem Phys 122:154704–154712

    Google Scholar 

  35. Jayaraman S, Maginn EJ (2007) Computing the melting point and thermodynamic stabilty of the orthorhombic and monoclinic crystalline polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride. J Chem Phys 127:214504

    Google Scholar 

  36. Krossing I, Slattery JM, Daguenet C et al. (2006) Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies. J Am Chem Soc 128:13427–13434

    Google Scholar 

  37. Awada WH, Gilman JW, Nyden M et al. (2004) Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites. Thermochim Acta 409:3–11

    Google Scholar 

  38. Freemantle M (2003) BASF’S smart ionic liquid. Chem Eng News 81:9

    Google Scholar 

  39. Rodríguez H, Williams M, Wilkes JS et al. (2008) Ionic liquids for liquid-in-glass thermometers. Green Chem 10:501–507

    Google Scholar 

  40. Kosmulski M, Gustafsson, Rosenholm JB (2004) Thermal stability of low temperature ionic liquids revisited. Thermochim Acta 412:47–53

    Google Scholar 

  41. Kamavaram V, Reddy RG (2008) Thermal stabilities of di-alkylimidazolium chloride ionic liquids. Int J Therm Sci 47:773–777

    Google Scholar 

  42. Rebelo LPN, Canongia Lopes J, Esperança J et al. (2005) On the critical temperature, normal boiling point, and vapour pressure of ionic liquids. J Phys Chem B 109:6040–6043

    Google Scholar 

  43. Zaitsau DH, Kabo GJ, Strechan AA et al. (2006) Experimental vapour pressures of 1-alkyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl)imides and a correlation scheme for estimation of vapourization enthalpies of ionic liquids. J Phys Chem A 110:7303–7306

    Google Scholar 

  44. Armstrong JP, Hurst C, Jones RG et al. (2007) Vapourisation of ionic liquids. Phys Chem Chem Phys 9:982–990

    Google Scholar 

  45. Verevkin SP (2008) Predicting enthalpy of vaporization of ionic liquids: a simple rule for a complex property. Angew Chem Int Ed 47:5071–5074

    Google Scholar 

  46. Emel’yanenko VN, Verevkin SP, Heintz A (2008) Ionic liquids. Combination of combustion calorimetry with high-level quantum chemical calculations for deriving vaporization enthalpies. J Phys Chem B 112:8095–8098

    Google Scholar 

  47. Luo H, Baker GA, Dai S (2008) Isothermogravimetric determination of the enthalpies of vaporization of 1-alkyl-3-methylimidazolium ionic liquids. J Phys Chem B 112:10077–10081

    Google Scholar 

  48. Santos L, Canongia Lopes J, Coutinho J et al (2007) Ionic liquids: first direct determination of their cohesive energy. J Am Chem Soc 129:284–285

    Google Scholar 

  49. Diedenhofen M, Klamt A, Marsh K et al (2007) Prediction of the vapor pressure and vaporization enthalpy of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids. Phys Chem Chem Phys 9:4653–4656

    Google Scholar 

  50. Ludwig R (2008) Thermodynamic properties of ionic liquids – a cluster approach. Phys Chem Chem Phys 10:4333–4339

    Google Scholar 

  51. Valderrama JO, Robles PA (2007) Critical properties, normal boiling temperatures and acentric factors fifty ionic liquids. Ind Eng Chem Res 46:1338–1344

    Google Scholar 

  52. Valderrama JO, Sanga WW, Lazzús JA (2008) Critical properties, normal boiling temperature, and acentric factor of another 200 ionic liquids. Ind Eng Chem Res 47:1318–1330

    Google Scholar 

  53. Wagner W, Kleinrahm R, Losch HW et al. (2003) Density. Hydrostatic balance densimeters with magnetic suspension couplings. Bellows volumetry. Absolute density standards. In situ density measurements. In: Goodwin ARH, Marsh KN, Wakeham WA eds) Experimental thermodynamics, vol VI: measurement of the thermodynamic properties of single phases, IUPAC. Elsevier, Amsterdam

    Google Scholar 

  54. Kratky O, Leopold H, Stabinger HZ (1969) Density determination of liquids and gases to an accuracy of 10−6 g/cm3, with a sample volume of only 0.6 cm3. Z Angew Phys 27:273–277

    Google Scholar 

  55. Kandil ME, Harris KR, Goodwin ARH et al. (2006) Measurement of the viscosity and density of a reference fluid, with nominal viscosity at T = 298 K and p = 0.1 MPa of 29 mPa s, at temperatures between 273 and 423 K and pressures below 275 MPa. J Chem Eng Data 51:2185–2196

    Google Scholar 

  56. Dávila MJ, Aparicio S, Alcalde R et al. (2007) On the properties of 1-butyl-3-methylimidazolium octylsulfate ionic liquid. Green Chem 9:221–232

    Google Scholar 

  57. Sanmamed YA, González-Salgado D, Troncoso J et al. (2007) Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry. Fluid Phase Equilib 252:96–102

    Google Scholar 

  58. Goodwin ARH, Trusler JPM (2003) Speed of sound. Measurements of the speed of sound. Thermodynamic properties from the speed of sound. In: Goodwin ARH, Marsh KN, Wakeham WA eds) Experimental thermodynamics, vol VI: measurement of the thermodynamic properties of single phases, IUPAC. Elsevier, Amsterdam

    Google Scholar 

  59. Jacquemin J, Husson P, Padua AAH et al. (2006) Density and viscosity of several pure and water-saturated ionic liquids. Green Chem 8:172–180

    Google Scholar 

  60. Jacquemin J, Ge R, Nancarrow P et al (2008) Prediction of ionic liquid properties. I. Volumetric properties as a function of temperature at 0.1 MPa. J Chem Eng Data 53:716–726

    Google Scholar 

  61. Troncoso J, Cerdeirina CA, Sanmamed YA et al. (2006) Thermodynamic properties of imidazolium-based ionic liquids: densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][NTf2]. J Chem Eng Data 51:1856–1859

    Google Scholar 

  62. Rebelo LPN, Najdanovic-Visak V, Gomes de Azevedo R et al. (2005) Phase behaviour and thermodynamic properties of ionic liquids, ionic liquid mixtures, and ionic liquid solutions. In: Rogers, RD, Seddon KR eds) Ionic liquids IIIA: fundamentals, progress, challenges, and opportunities-properties and structure. ACS Symposium Series 901. American Chemical Society, Washington

    Google Scholar 

  63. Esperança J, Guedes HJR, Blesic M et al. (2006) Densities and derived thermodynamic properties of ionic liquids. 3. Phosphonium-based ionic liquids over an extended pressure range. J Chem Eng Data 51:237–242

    Google Scholar 

  64. Yang J, Lu X, Gui J et al. (2004) A new theory for ionic liquids – the interstice model part 1. The density and surface tension of ionic liquid EMISE. Green Chem 6:541–543

    Google Scholar 

  65. Kim YS, Choi WY, Jang JH et al. (2005) Solubility measurement and prediction of carbon dioxide in ionic liquids. Fluid Phase Equilib 256:439–445

    Google Scholar 

  66. Kim YS, Jang JH, Lim DB et al. (2007) Solubility of mixed gases containing carbon dioxide in ionic liquids: measurements and predictions. Fluid Phase Equilib 228:70–74

    Google Scholar 

  67. Ye C, Shreeve JM (2007) Rapid and accurate estimation of densities of room-temperature ionic liquids and salts. J Phys Chem A 111:1456–1461

    Google Scholar 

  68. Gardas RL, Coutinho JAP (2008) Extension of the Ye and Shreeve group contribution method for density estimation of ionic liquids in a wide range of temperatures and pressures. Fluid Phase Equilib 263:26–32

    Google Scholar 

  69. Knotts TA, Wilding WV, Oscarson JL et al. (2001) Use of the DIPPR database for development of QSPR correlations: surface tension. J Chem Eng Data 46:1007–1012

    Google Scholar 

  70. Jacquemin J, Husson P, Mayer V et al (2007) High-pressure volumetric properties of imidazolium-based ionic liquids – effect of the anion. J Chem Eng Data 52:2204–2211

    Google Scholar 

  71. Jacquemin J, Nancarrow P, Rooney DW et al. (2008) Prediction of ionic liquid properties. II. Volumetric properties as a function of temperature and pressure. J Chem Eng Data 53:2133–2143

    Google Scholar 

  72. Riddick JA, Bunger WB, Sakano TK (1986) Organic solvents, physical properties and method of purification, 4th ed. Wiley, New York

    Google Scholar 

  73. Bonhote P, Dias AP, Papageorgiou N et al. (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178

    Google Scholar 

  74. Crosthwaite JM, Muldoon MJ, Dixon JK et al. (2005) Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J Chem Thermodyn 37:559–568

    Google Scholar 

  75. Seddon KR, Stark A, Torres MJ (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72:2275–2287

    Google Scholar 

  76. Chauvin Y, Olivier-Bourbigou H (1995) Nonaqueous ionic liquids as reaction solvents. Chem Tech 25:26–30

    Google Scholar 

  77. Baker SN, Baker GA, Bright FV (2002) Temperature-dependent microscopic solvent properties of ‘dry’ and ‘wet’ 1-butyl-3-methylimidazolium hexafluorophosphate: correlation with ET(30) and Kamlet-Taft polarity scales. Green Chem 4:165–169

    Google Scholar 

  78. Widegren JA, Laesecke A, Magee JW (2005) The effect of dissolved water on the viscosities of hydrophobic room-temperature ionic liquids. Chem Commun 12:1610–1612

    Google Scholar 

  79. Silvester DS, Compton RG (2006) Electrochemistry in room temperature ionic liquids: a review and some possible applications. Z Phys Chem 220:1247–1274

    Google Scholar 

  80. Saha S, Hamaguchi HO (2006) Effect of water on the molecular structure and arrangement of nitrile-functionalized ionic liquids. J Phys Chem B 110:2777–2781

    Google Scholar 

  81. Tokuda H, Hayamizu K, Ishii K et al (2004) Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B 108:16593–16600

    Google Scholar 

  82. Tokuda H, Hayamizu K, Ishii K et al (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109:6103–6110

    Google Scholar 

  83. Tokuda H, Ishii K, Susan MABH et al (2006) Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures. J Phys Chem B 110:2833–2839

    Google Scholar 

  84. Tokuda H, Tsuzuki S, Susan MABH et al (2006) How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J Phys Chem B 110:19593–19600

    Google Scholar 

  85. Harris KR, Woolf LA, Kanakubo M (2005) Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Chem Eng Data 50:1777–1782

    Google Scholar 

  86. Harris KR, Kanakubo M, Woolf LA (2007) Temperature and pressure dependence of the viscosity of the ionic liquids 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J Chem Eng Data 52:1080–1085

    Google Scholar 

  87. Millat J, Dymond JH, Nieto de Castro CA (1996) Transport properties of fluids. their correlation, prediction and estimation. Cambridge University Press. Cambridge, UK

    Google Scholar 

  88. Orrick C, Erbar EJH (1973) Estimation of viscosity for organic liquids. Proposition Report, Oklahoma State University, Stillwater

    Google Scholar 

  89. Sastri SRS, Rao KK (2000) A new method for predicting saturated liquid viscosity at temperatures above the normal boiling point. Fluid Phase Equilib 175:311–323

    Google Scholar 

  90. Gastonbonhomme Y, Petrino P, Chevalier JL (1994) UNIFAC visco group-contribution method for predicting kinematic viscosity – extension and temperature-dependence. Chem Eng Sci 49:1799–1806

    Google Scholar 

  91. Przezdziecki JW, Sridhar T (1985) Prediction of liquid viscosities. AIChE J 31:333–338

    Google Scholar 

  92. Chatterjee A, Vasant AK (1982) Estimation of viscosity of organic liquids. Chem Ind 11:375–376

    Google Scholar 

  93. Teja AS, Rice P (1981) Generalized corresponding states method for the viscosities of liquid-mixtures. Ind Eng Chem Fund 20:77–81

    Google Scholar 

  94. Teja AS, Rice P (1981) The measurement and prediction of the viscosities of some binary-liquid mixtures containing normal-hexane. Chem Eng Sci 36:7–10

    Google Scholar 

  95. Queimada AJ, Marrucho IM, Coutinho JAP et al. (2005) Viscosity and liquid density of asymmetric n-alkane mixtures: measurement and modeling. Int J Thermophys 26:47–61

    Google Scholar 

  96. Queimada AJ, Rolo LI, Caço AI et al. (2006) Prediction of viscosities and surface tensions of fuels using a new corresponding states model. Fuel 85:874–877

    Google Scholar 

  97. Yinghua L, Peisheng M, Ping L (2002) Estimation of liquid viscosity of pure compounds at different temperatures by a corresponding-states group-contribution method. Fluid Phase Equilib 198:123–130

    Google Scholar 

  98. de Guzman J (1913) Relation between fluidity and heat fusion. An Soc Esp Fis Quim 11:353–362

    Google Scholar 

  99. Andrade ENDC (1930) The viscosity of liquids. Nature 125:309–310

    Google Scholar 

  100. Gardas RL, Coutinho JAP (2008) A group contribution method for viscosity estimation of ionic liquids. Fluid Phase Equilib 266:195–201

    Google Scholar 

  101. Reid RC, Prausnitz JM, Sherwood TK (1987) The properties of gases and liquids, 4th edn. McGraw-Hill, New York

    Google Scholar 

  102. Gardas RL, Coutinho JAP (2009) Group contribution methods for the prediction of thermophysical and transport properties of ionic liquids AIChE J. (in press) DOI: 10.1002/aic.11737

    Google Scholar 

  103. Leclercq L, Suisse L, Agbossou-Niedercorn F (2008) Biphasic hydroformylation in ionic liquids: interaction between phosphane ligands and imidazolium triflate, toward an asymmetric process. Chem Commun 3:311–313

    Google Scholar 

  104. Gardas RL, Coutinho JAP (2008) Applying a QSPR correlation to the prediction of surface tensions of ionic liquids. Fluid Phase Equilib 265:57–65

    Google Scholar 

  105. Knotts TA, Wilding WV, Oscarson JL et al. (2001) Use of the DIPPR database for development of QSPR correlations: surface tension. J Chem Eng Data 46:1007–1012

    Google Scholar 

  106. Strechan AA, Paulechka YU, Blokhin AV et al. (2008) Low-temperature heat capacity of hydrophilic ionic liquids [BMIM][CF3COO] and [BMIM][CH3COO] and a correlation scheme for estimation of heat capacity of ionic liquids. J Chem Thermodyn 40:632–639

    Google Scholar 

  107. García-Miaja G, Troncoso J, Romaní L (2007) Density and heat capacity as a function of temperature for binary mixtures of 1-butyl-3-methylpyridinium tetrafluoroborate + water, + ethanol, and + nitromethane. J Chem Eng Data 52:2261–2265

    Google Scholar 

  108. Graziano G (2005) On the hydration heat capacity change of benzene. Biophys Chem 116:137–144

    Google Scholar 

  109. Ge R, Hardacre C, Jacquemin J et al. (2008) Heat capacities of ionic liquids as a function of temperature at 0.1 MPa – measurement and prediction. J Chem Eng Data 53:2148–2153

    Google Scholar 

  110. Holbrey JD, Reichert WM, Reddy RG et al. (2003) Heat capacities of ionic liquids and their applications as thermal fluids. In: Rogers RD, Seddon KR eds) Ionic liquids as green solvents: progress and prospects. ACS Symposium Series. ACS, Washington DC

    Google Scholar 

  111. Archer DG, Widegren JA, Kirklin DR et al. (2005) Enthalpy of solution of 1-octyl-3-methylimidazolium tetrafluoroborate in water and in aqueous sodium fluoride. J Chem Eng Data 50:1484–1491

    Google Scholar 

  112. Paulechka YU, Blokhin AV, Kabo GJ et al. (2007) Thermodynamic properties and polymorphism of 1-alkyl-3-methylimidazolium bis(triflamides). J Chem Thermodyn 39:866–877

    Google Scholar 

  113. Joback KG (1984) A unified approach to physical property estimation using multivariant statistical techniques. MSc thesis in chemical Engineering. Massachusetts Institute of Technology, Cambrdige

    Google Scholar 

  114. Poling BE , Prausnitz JM , O'Connell JP (2001) The properties of gases and liquids . McGraw-Hill , New York

    Google Scholar 

  115. Diedrichs A, Gmehling J (2006) Measurement of heat capacities of ionic liquids by differential scanning calorimetry. Fluid Phase Equilib 244:68–77

    Google Scholar 

  116. Gardas RL, Coutinho JAP (2008) A group contribution method for heat capacity estimation of ionic liquids. Ind Eng Chem Res 47:5751–5757

    Google Scholar 

  117. Ruzicka V, Domalski ES (1993) Estimation of the heat-capacities of organic liquids as a function of temperature using group additivity. 1. Hydrocarbon compounds. J Phys Chem Ref Data 22:597–618

    Google Scholar 

  118. Ruzicka V, Domalski ES (1993) Estimation of the heat-capacities of organic liquids as a function of temperature using group additivity. 2. Compounds of carbon, hydrogen, halogens, nitrogen, oxygen, and sulfur. J Phys Chem Ref Data 22:619–657

    Google Scholar 

  119. Frez C, Diebold GJ, Tran C et al. (2006) Determination of thermal diffusivities, thermal conductivities, and sound speeds of room temperature ionic liquids by the transient grating technique. J Chem Eng Data 51:1250–1255

    Google Scholar 

  120. Tomida D, Kenmochi S, Tsukada T et al. (2007) Thermal conductivities of [bmim][PF6], [hmim][PF6], and [omim][PF6] from 294 to 335 K at pressures up to 20 MPa. Int J Thermophys 28:1147–1160

    Google Scholar 

  121. Ge R, Hardacre C, Nancarrow P et al. (2007) Thermal conductivities of ionic liquids over the temperature range from 293 K to 353 K. J Chem Eng Data 52:1819–1823

    Google Scholar 

  122. Chen H, He Y, Zhu J et al. (2008) Rheological and heat transfer behaviour of the ionic liquid, [C4mim][NTf2]. Int J Heat Fluid Flow 29 (2008) 149–155

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Rooney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rooney, D., Jacquemin, J., Gardas, R. (2009). Thermophysical Properties of Ionic Liquids. In: Kirchner, B. (eds) Ionic Liquids. Topics in Current Chemistry, vol 290. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2008_32

Download citation

Publish with us

Policies and ethics