Skip to main content

Hydrogen Bond-Assembled Synthetic Molecular Motors and Machines

  • Chapter
  • First Online:
Molecular Machines

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 262))

Abstract

Nature uses molecular motors and machines in virtually every significant biological process but learning how to design and assemble simpler artificial structures that function through controlled molecular-level motion is a major challenge for contemporary physical science. In this review we discuss some of the principles behind synthetic molecular motors and machines and examine a class of molecular architectures, benzylic amide catenanes and rotaxanes, that are proving promising in this area. The movement of the components in these systems can be controlled by light, electrons, chemical reactions, pH, temperature and the nature of the environment leading to both simple switches (molecular shuttles) and more complex molecular motors. They operate through biasing random thermal motion and can be understood through an appreciation of physical fluxional transport mechanisms. Remarkably simple examples of stimuli-responsive molecular shuttles can be interfaced with—and even perform physical tasks in—the macroscopic world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a.c.:

alternating current

ICD:

induced circular dichroism

NMR:

nuclear magnetic resonance

NTs:

N-tosyl

SPT-SIR:

spin polarization transfer by selective inversion recovery

VT:

variable temperature

References

  1. Balzani V, Credi A, Raymo FM, Stoddart JF (2000) Angew Chem Int Ed 39:3349

    Article  Google Scholar 

  2. Balzani V, Venturi M, Credi A (2003) Molecular devices and machines. A journey into the nanoworld. Wiley-VCH, Weinheim

    Google Scholar 

  3. Easton CJ, Lincoln SF, Barr L, Onagi H (2004) Chem Eur J 10:3120

    Article  CAS  Google Scholar 

  4. Kottas GS, Clarke LI, Horinek D, Michl J (2005) Chem Rev 105:1281

    Article  CAS  Google Scholar 

  5. Kinbara K, Aida T (2005) Chem Rev 105:1377

    Article  CAS  Google Scholar 

  6. Kay ER, Leigh DA (2005) Synthetic molecular machines. In: Schrader T, Hamilton AD (eds) Functional artificial receptors. Wiley-VCH, Weinheim, p 333

    Google Scholar 

  7. Astumian RD, Hänggi P (2002) Phys Today 55(11):33

    Google Scholar 

  8. Jones RAL (2004) Soft machines: nanotechnology and life. OUP, Oxford

    Google Scholar 

  9. Hänggi P, Bartussek R (1996) Lect Notes Phys 476:294

    Google Scholar 

  10. Jülicher F, Ajdari A, Prost J (1997) Rev Mod Phys 69:1269

    Google Scholar 

  11. Reimann P (2002) Phys Rep 361:57

    Article  CAS  Google Scholar 

  12. Reiman P, Hänggi (2002) Appl Phys A 75:169

    Google Scholar 

  13. Parrondo JMR, de Cisneros BJ (2002) Appl Phys A 75:179

    Article  CAS  Google Scholar 

  14. Gabryœ BJ, Pesz K, Bartkiewicz SJ (2004) Physica A 336:112

    Google Scholar 

  15. Astumian RD (1997) Science 276:917

    Article  CAS  ISI  Google Scholar 

  16. Astumian RD (2002) Appl Phys A 75:193

    Article  CAS  Google Scholar 

  17. Oster G, Wang H (2003) 13:114

    Google Scholar 

  18. Kurzyński M, Cheł miniak P (2004) Physica A 336:123

    Google Scholar 

  19. Schliwa M (ed) (2003) Molecular motors. Wiley-VCH, Weinheim

    Google Scholar 

  20. Hess H, Vogel V (2001) Rev Mol Biotechnol 82:67

    CAS  Google Scholar 

  21. Hess H, Bachand GD, Vogel V (2004) Chem Eur J 10:2110

    Article  CAS  Google Scholar 

  22. Purcell EM (1977) Am J Phys 45:3

    Article  Google Scholar 

  23. Schill G (1971) Catenanes, rotaxanes and knots. Academic Press, New York

    Google Scholar 

  24. Walba DM (1985) Tetrahedron 41:3161

    Article  CAS  ISI  Google Scholar 

  25. Amabilino DB, Stoddart JF (1995) Chem Rev 95:2725

    Article  CAS  Google Scholar 

  26. Leigh DA, Murphy A (1999) Chem Ind 178

    Google Scholar 

  27. Breault GA, Hunter CA, Mayers PC (1999) Tetrahedron 55:5265

    Article  CAS  ISI  Google Scholar 

  28. Sauvage J-P, Dietrich-Buchecker CO (eds) (1999) Molecular catenanes, rotaxanes and knots. Wiley-VCH, Weinheim

    Google Scholar 

  29. Hannam JS, Kidd TJ, Leigh DA, Wilson AJ (2003) Org Lett 5:1907

    Article  CAS  Google Scholar 

  30. Block SM (1996) Cell 87:151

    Article  CAS  ISI  Google Scholar 

  31. Block SM (1998) Cell 93:5

    Article  CAS  ISI  Google Scholar 

  32. Skou JC (1998) Angew Chem Int Ed 37:2321

    Article  Google Scholar 

  33. Fyfe MCT, Glink PT, Menzer S, Stoddart JF, White AJP, Williams DJ (1997) Angew Chem Int Ed Engl 36:2068

    Article  CAS  Google Scholar 

  34. Wasserman E (1960) J Am Chem Soc 82:4433

    CAS  Google Scholar 

  35. Schill G, Lüttringhaus A (1964) Angew Chem Int Ed Engl 3:546

    Article  Google Scholar 

  36. Harrison IT, Harrison S (1967) J Am Chem Soc 89:5723

    CAS  Google Scholar 

  37. Harrison IT (1974) J Chem Soc Perkin Trans 1:301

    Google Scholar 

  38. Dietrich-Buchecker CO, Sauvage J-P, Kintzinger JP (1983) Tetrahedron Lett 24:5095

    CAS  Google Scholar 

  39. Dietrich-Buchecker CO, Sauvage J-P (1987) Chem Rev 87:795

    Article  CAS  Google Scholar 

  40. Sauvage J-P (1990) Acc Chem Res 32:53

    Google Scholar 

  41. Busch DH, Stephenson NA (1990) Coord Chem Rev 100:119

    Article  CAS  Google Scholar 

  42. Hoss R, Vögtle F (1994) Angew Chem Int Ed Engl 33:375

    Article  Google Scholar 

  43. Philp D, Stoddart JF (1996) Angew Chem Int Ed Engl 35:1155

    Article  CAS  Google Scholar 

  44. Fujita M, Ogura K (1996) Coord Chem Rev 148:249

    Article  CAS  Google Scholar 

  45. Fyfe MCT, Stoddart JF (1997) Acc Chem Res 30:393

    Article  CAS  Google Scholar 

  46. Jager R, Vögtle F (1997) Angew Chem Int Ed Engl 36:930

    CAS  Google Scholar 

  47. Diederich F, Strang PJ (eds) (1999) Templated organic synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  48. Fujita M (1999) Acc Chem Res 32:53

    Article  CAS  Google Scholar 

  49. Hubin TJ, Busch DH (2000) Coord Chem Rev 200:5

    Article  Google Scholar 

  50. Furlan RLE, Otto S, Sanders JKM (2002) Proc Natl Acad Sci USA 99:4801

    Article  CAS  Google Scholar 

  51. Chambron J-C, Collin J-P, Heitz V, Jouvenot D, Kern J-M, Mobian P, Pomeranc D, Sauvage J-P (2004) Eur J Org Chem 1627

    Google Scholar 

  52. Hunter CA (1992) J Am Chem Soc 114:5303

    Article  CAS  Google Scholar 

  53. Vögtle F, Meier S, Hoss R (1992) Angew Chem Int Ed Engl 31:1619

    Google Scholar 

  54. Johnston AG, Leigh DA, Pritchard RJ, Deegan MD (1995) Angew Chem Int Ed Engl 34:1209

    CAS  Google Scholar 

  55. Johnston AG, Leigh DA, Murphy A, Smart JP, Deegan MD (1996) J Am Chem Soc 118:10662

    CAS  Google Scholar 

  56. Johnston AG, Leigh DA, Nezhat L, Smart JP, Deegan MD (1995) Angew Chem Int Ed Engl 34:1212

    CAS  Google Scholar 

  57. Leigh DA, Venturini A, Wilson AJ, Wong JKY, Zerbetto F (2004) Chem Eur J 10:4960

    Article  CAS  Google Scholar 

  58. Leigh DA, Murphy A, Smart JP, Slawin AMZ (1997) Angew Chem Int Ed Engl 36:728

    Article  CAS  Google Scholar 

  59. Lane AS, Leigh DA, Murphy A (1997) J Am Chem Soc 119:11092

    Article  CAS  Google Scholar 

  60. Gatti FG, Leigh DA, Nepogodiev SA, Slawin AMZ, Teat SJ, Wong JKY (2001) J Am Chem Soc 123:5983

    Article  CAS  Google Scholar 

  61. Leigh DA, Murphy A, Smart JP, Deleuze MS, Zerbetto F (1998) J Am Chem Soc 120:6458

    CAS  Google Scholar 

  62. Deleuze MS, Leigh DA, Zerbetto F (1999) J Am Chem Soc 121:2364

    CAS  Google Scholar 

  63. Leigh DA, Troisi A, Zerbetto F (2001) Chem Eur J 7:1450

    Article  CAS  Google Scholar 

  64. Sandström J (1982) Dynamic NMR spectroscopy. Academic Press, London

    Google Scholar 

  65. Dahlquist FW, Longmur KJ, Du Vernet RB (1975) J Magn Reson 17:406

    CAS  Google Scholar 

  66. Leigh DA, Troisi A, Zerbetto F (2000) Angew Chem Int Ed 39:350

    Article  CAS  Google Scholar 

  67. Anelli PL, Spencer N, Stoddart JF (1991) J Am Chem Soc 113:5131

    Article  CAS  Google Scholar 

  68. Keaveney CM, Leigh DA (2004) Angew Chem Int Ed 43:1222

    Article  CAS  Google Scholar 

  69. Brouwer AM, Frochot C, Gatti FG, Leigh DA, Mottier L, Paolucci F, Roffia S, Wurpel GWH (2001) Science 291:2124

    Article  CAS  ISI  Google Scholar 

  70. Altieri A, Gatti FG, Kay ER, Leigh DA, Martel D, Paolucci F, Slawin AMZ, Wong JKY (2003) J Am Chem Soc 125:8644

    Article  CAS  Google Scholar 

  71. Leigh DA, Pérez EM (2004) Chem Commun 2262

    Google Scholar 

  72. Altieri A, Bottari G, Dehez F, Leigh DA, Wong JKY, Zerbetto F (2003) Angew Chem Int Ed 42:2296

    Article  CAS  Google Scholar 

  73. Bottari G, Dehez F, Leigh DA, Nash PJ, Pérez EM, Wong JKY, Zerbetto F (2003) Angew Chem Int Ed 42:5886

    Article  CAS  Google Scholar 

  74. Hanke A, Metzler R (2002) Chem Phys Lett 359:22

    Article  CAS  Google Scholar 

  75. Bermudez V, Capron N, Gase T, Gatti FG, Kajzar F, Leigh DA, Zerbetto F, Zhang SW (2000) Nature 406:608

    CAS  ISI  Google Scholar 

  76. Gatti FG, León S, Wong JKY, Bottari G, Altieri A, Morales MAF, Teat SJ, Frochot C, Leigh DA, Brouwer AM, Zerbetto F (2003) Proc Natl Acad Sci USA 100:10

    Article  CAS  Google Scholar 

  77. Lukin O, Kubota T, Okamoto Y, Schelhase F, Yoneva A, Müller WM, Müller U, Vögtle F (2003) Angew Chem Int Ed 42:4542

    CAS  Google Scholar 

  78. Leigh DA, Moody K, Smart JP, Watson KJ, Slawin AMZ (1996) Angew Chem Int Ed Engl 35:306

    Article  CAS  Google Scholar 

  79. Ceroni P, Leigh DA, Mottier L, Paolucci F, Roffia S, Tetard D, Zerbetto F (1999) J Phys Chem B 103:10171

    Article  CAS  Google Scholar 

  80. Leigh DA, Wong JKY, Dehez F, Zerbetto F (2003) Nature 424:174

    Article  CAS  ISI  Google Scholar 

  81. Kelly TR, De Silva H, Silva RA (1999) Nature 401:150

    Article  CAS  ISI  Google Scholar 

  82. Kelly TR (2001) Acc Chem Res 34:514

    Article  CAS  Google Scholar 

  83. Sestelo JP, Kelly TR (2002) Appl Phys A 75:337

    Article  CAS  Google Scholar 

  84. Koumura N, Zijlstra RWJ, van Delden RA, Harada N, Feringa BL (1999) Nature 401:152

    CAS  ISI  Google Scholar 

  85. Kelly TR, Silva RA, De Silva H, Jasmin S, Zhao YJ (2000) J Am Chem Soc 122:6935

    CAS  Google Scholar 

  86. Feringa BL (2001) Acc Chem Res 34:504

    Article  CAS  Google Scholar 

  87. Feringa BL, Koumura N, van Delden RA, ter Wiel MKJ (2002) Appl Phys A 75:301

    Article  CAS  Google Scholar 

  88. Koumura N, Geertsema EM, van Gelder MB, Meetsma A, Feringa BL (2002) J Am Chem Soc 124:5037

    Article  CAS  Google Scholar 

  89. Geertsema EM, Koumura N, ter Wiel MKJ, Meetsma A, Feringa BL (2002) Chem Commun 2962

    Google Scholar 

  90. ter Wiel MKJ, van Delden RA, Meetsma A, Feringa BL (2003) J Am Chem Soc 125:15076

    Google Scholar 

  91. Feringa BL, van Delden RA, ter Wiel MKJ (2003) Pure Appl Chem 75:563

    CAS  Google Scholar 

  92. Hernández JV, Kay ER, Leigh DA (2004) Science 306:1532

    Google Scholar 

  93. Maxwell JC (1867) Letter to PG Tait, 11 December 1867. Quoted in: Knot CG (1911) Life and scientific work of Peter Guthrie Tait. Cambridge University Press, Cambridge, p 213

    Google Scholar 

  94. Pérez EM, Dryden DTF, Leigh DA, Teobaldi G, Zerbetto F (2004) J Am Chem Soc 126:12210

    Google Scholar 

  95. Asakawa M, Brancato G, Fanti M, Leigh DA, Shimizu T, Slawin AMZ, Wong JKY, Zerbetto F, Zhang SW (2002) J Am Chem Soc 124:2939

    Article  CAS  Google Scholar 

  96. Bottari G, Leigh DA, Pérez EM (2003) J Am Chem Soc 125:13360

    Article  CAS  Google Scholar 

  97. Leigh DA, Morales MAF, Pérez EM, Wong JKY, Saiz CG, Slawin AMZ, Carmichael AJ, Haddleton DM, Brouwer AM, Buma WJ, Wurpel GWH, León S, Zerbetto F (2005) Angew Chem Int Ed 44:3062

    CAS  Google Scholar 

  98. Berná J, Leigh DA, Lubomska M, Mendoza SM, Pérez EM, Rudolf P, Teobaldi G, Zerbetto F (2005) Nature Mater 4:704

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Leigh .

Editor information

T. Ross Kelly

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Kay, E.R., Leigh, D.A. Hydrogen Bond-Assembled Synthetic Molecular Motors and Machines. In: Kelly, T.R. (eds) Molecular Machines. Topics in Current Chemistry, vol 262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_011

Download citation

Publish with us

Policies and ethics