Skip to main content

Towards a Rational Design of Molecular Switches and Sensors from their Basic Building Blocks

  • Chapter
  • First Online:
Molecular Machines

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 262))

Abstract

A fundamental understanding of the thermodynamics and kinetics of mechanically interlocked molecules, such as [2]rotaxanes, will contribute to a more rational design of new molecular machines. This Chapter describes the influence of chemical modifications and the role of the physical environment on the ground state thermodynamics and the shuttling and switching kinetics of several tetrathiafulvalene- and 1,5-dioxynaphthalene-containing [2]rotaxanes. A comparison between the properties of these bistable rotaxanes and model host-guest complexes of the corresponding π-electron donating recognition units with the π-electron accepting cyclophane, cyclobis(paraquat-p-phenylene), has been made, resulting in useful guidelines for the design of new bistable rotaxanes with specific, desirable physical performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BPTTF:

bis(pyrrolo)tetrathiafulvalene

CT:

charge-transfer

CV:

cyclic voltammetry

E ox :

oxidation potential

Et:

ethyl

ΔG:

free energy difference

ΔGa:

free energy of association

ΔG:

free energy of activation

ΔH:

enthalpy difference

ΔH:

enthalpy of activation

ΔS:

entropy difference

ΔS:

entropy of activation

DEG:

diethylene glycol

DNP:

1,5-dioxynaphthalene

g:

gram(s)

GSCC:

ground-state co-conformation

h :

Planck constant (6.262 × 10 J s)

I :

current

ITC:

isothermal titration calorimetry

J:

Joule

k :

rate constant

K:

Kelvin

K :

constant

K a :

association constant

k B :

Boltzmann constant (1.381 × 10 m2 kg s−2 K−1)

K eq :

equilibrium constant (NGSCC/NMSCC)

M:

molarity

Me:

methyl

min.:

minute(s)

mol:

mole(s)

MPTTF:

mono(pyrrolo)tetrathiafulvalene

MSCC:

metastable state co-conformation

MSTJ:

molecular-switch tunnel junction

N :

population

NEMS:

nanoelectromechanical systems

NMR:

nuclear magnetic resonance

PES:

potential energy surface

R :

universal gas constant (8.3144 J mol−1 K−1)

r.t.:

room temperature

s:

second(s)

SAM:

self-assembled monolayer

T :

temperature

TRISPHAT:

tris(tetrachlorobenzenediolato)phosphate(V)

TTF:

tetrathiafulvalene

UV/Vis:

ultraviolet/visible

VT:

variable temperature

VTT CV:

variable time and temperature cyclic voltammetry

References

  1. Mendes PM, Flood AH, Stoddart JF (2005) Appl Phys A 80:1197

    Article  Google Scholar 

  2. Huang TJ, Brough B, Ho CM, Liu Y, Flood AH, Bonvallet PA, Tseng HR, Stoddart JF, Baller M, Magonov S (2004) Appl Phys Lett 85:5391

    CAS  Google Scholar 

  3. Liu Y, Flood AH, Bonvallet PA, Vignon SA, Northrop BH, Tseng HR, Jeppesen JO, Huang TJ, Brough B, Baller M, Magonov S, Solares SD, Goddard WA, Ho CM, Stoddart JF (2005) J Am Chem Soc 127:9745

    CAS  Google Scholar 

  4. Nikitin K, Long B, Fitzmaurice D (2003) Chem Commun 282

    Google Scholar 

  5. Long B, Nikitin K, Fitzmaurice D (2003) J Am Chem Soc 125:5152

    CAS  Google Scholar 

  6. Nikitin K, Fitzmaurice D (2005) J Am Chem Soc 127:8067

    Article  CAS  Google Scholar 

  7. Van Delden RA, Van Gelder MB, Huck NPM, Feringa BL (2003) Adv Funct Mater 13:319

    Google Scholar 

  8. Van Delden RA, Mecca T, Rosini C, Feringa BL (2004) Chem Eur J 10:61

    Article  Google Scholar 

  9. Jiménez MC, Dietrich-Buchecker C, Sauvage J (2000) Angew Chem Int Ed 39:3284

    Google Scholar 

  10. Jiménez-Molero MC, Dietrich-Buchecker C, Sauvage JP (2002) Chem Eur J 8:1456

    Google Scholar 

  11. Jiménez-Molero MC, Dietrich-Buchecker C, Sauvage JP (2003) Chem Commun 1613

    Google Scholar 

  12. Sauvage JP (2005) Chem Commun 1507

    Google Scholar 

  13. Hernandez R, Tseng HR, Wong JW, Stoddart JF, Zink JI (2004) J Am Chem Soc 126:3370

    Article  CAS  Google Scholar 

  14. Katz E, Lioubashevsky O, Willner I (2004) J Am Chem Soc 126:15520

    Article  CAS  Google Scholar 

  15. Katz E, Sheeney-Haj-Ichia L, Willner I (2004) Angew Chem Int Ed 43:3292

    CAS  Google Scholar 

  16. Luo Y, Collier CP, Jeppesen JO, Nielsen KA, De Ionno E, Ho G, Perkins J, Tseng HR, Yamamoto T, Stoddart JF, Heath JR (2002) ChemPhysChem 3:519

    CAS  Google Scholar 

  17. Huang TJ, Tseng HR, Sha L, Lu W, Brough B, Flood AH, Yu BD, Celestre PC, Chang JP, Stoddart JF, Ho CM (2004) Nano Lett 4:2065

    CAS  ISI  Google Scholar 

  18. Flood AH, Liu Y, Stoddart JF (2004) From cyclophanes to molecular machines. In: Hopf H, Gleiter R (eds) Modern Cyclophane Chemistry. Wiley, Weinheim, p 485

    Google Scholar 

  19. Flood AH, Ramirez RJA, Deng WQ, Muller RP, Goddard III WA, Stoddart JF (2004) Aust J Chem 57:301

    Article  CAS  Google Scholar 

  20. Stoddart JF, Tseng HR (2003) PNAS 99:4797

    Google Scholar 

  21. Doddi G, Ercolani G, Mencarelli P, Piermattei A (2005) J Org Chem 70:3761

    Article  CAS  Google Scholar 

  22. Diederich F, Stang PJ (eds) (2000) Templated Organic Synthesis. Wiley, Weinheim

    Google Scholar 

  23. Aricó F, Badjic JD, Cantrill SJ, Flood AH, Leung KCF, Liu Y, Stoddart JF (2005) Top Curr Chem 249:203

    Google Scholar 

  24. Koumura N, Geertsema EM, Van Gelder MB, Meetsma A, Feringa BL (2002) J Am Chem Soc 124:5037

    Article  CAS  Google Scholar 

  25. Bottari G, Dehez F, Leigh DA, Nash PJ, Pérez EM, Wong JKY, Zerbetto F (2003) Angew Chem Int Ed 42:5886

    Article  CAS  Google Scholar 

  26. Leigh DA, Wong JKY, Dehez F, Zerbetto F (2003) Nature 424:174

    Article  CAS  ISI  Google Scholar 

  27. Hernández JV, Kay ER, Leigh DA (2004) Science 306:1532

    Google Scholar 

  28. Albrecht-Gary AM, Dietrich-Buchecker C, Saad Z, Sauvage JP (1992) Chem Commun 280

    Google Scholar 

  29. Leigh DA, Troisi A, Zerbetto F (2000) Angew Chem Int Ed 39:350

    Article  CAS  Google Scholar 

  30. Leigh DA, Troisi A, Zerbetto F (2001) Chem Eur J 7:1450

    Article  CAS  Google Scholar 

  31. Odell B, Reddington MV, Slawin AMZ, Spencer N, Stoddart JF, Williams DJ (1988) Angew Chem Int Ed Engl 27:1547

    Article  Google Scholar 

  32. Lu T, Zhang L, Gokel GW, Kaifer AE (1993) J Am Chem Soc 115:2542

    CAS  Google Scholar 

  33. Capobianchi S, Doddi G, Ercolani G, Keyes JW, Mencarelli P (1997) J Org Chem 62:7015

    Article  CAS  Google Scholar 

  34. Kharitonov AB, Shipway AN, Katz E, Willner I (1999) Rev Anal Chem 18:255

    CAS  Google Scholar 

  35. Lahav M, Gabai R, Shipway AN, Willner I (1999) Chem Commun 1937

    Google Scholar 

  36. Lahav M, Shipway AN, Willner I (1999) J Chem Soc, Perkin Trans II 1925

    Google Scholar 

  37. Kaminski GA, Jorgensen WL (1999) J Chem Soc, Perkin Trans II 2365

    Google Scholar 

  38. Damgaard D, Nielsen MB, Lau J, Jensen KB, Zubarev R, Levillain E, Becher J (2000) J Mater Chem 10:2249

    Article  CAS  Google Scholar 

  39. Zhang KC, Liu L, Mu TW, Guo QX (2001) Chem Phys Lett 333:195

    CAS  Google Scholar 

  40. Grubert L, Jacobi D, Buck K, Abraham W, Mügge C, Krause E (2001) Eur J Org Chem 20:3921

    Google Scholar 

  41. Hunter CA, Sanders JKM (1990) J Am Chem Soc 112:5525

    CAS  Google Scholar 

  42. Hunter CA (1993) Angew Chem Int Ed Engl 32:1584

    Article  Google Scholar 

  43. Cozzi F, Siegel JS (1995) Pure Appl Chem 67:683

    CAS  Google Scholar 

  44. Shetty AS, Zhang J, Moore JS (1996) J Am Chem Soc 118:1019

    CAS  Google Scholar 

  45. Claessens CG, Stoddart JF (1997) J Phys Org Chem 10:254

    CAS  Google Scholar 

  46. Desiraju GR (1991) Acc Chem Res 24:290

    Article  CAS  Google Scholar 

  47. Desiraju GR (1996) Acc Chem Res 29:441

    Article  CAS  Google Scholar 

  48. Krishnamohan Sharma CV, Zaworotko MJ (1996) Chem Commun 2655

    Google Scholar 

  49. Steiner T (1997) Chem Commun 727

    Google Scholar 

  50. Berger I, Egli M (1997) Chem Eur J 3:1400

    CAS  Google Scholar 

  51. Bodige SG, Rogers RD, Blackstock SC (1997) Chem Commun 1669

    Google Scholar 

  52. Desiraju GR (1998) Top Curr Chem 198:57

    Google Scholar 

  53. Raymo FM, Bartberger MD, Houk KN, Stoddart JF (2001) 123:9264

    Google Scholar 

  54. Desiraju GR (2002) Acc Chem Res 35:565

    Article  CAS  Google Scholar 

  55. Ashton PR, Odell B, Reddington MV, Slawin AMZ, Stoddart JF, Williams DJ (1988) Angew Chem Int Ed Engl 27:1550

    Google Scholar 

  56. Ashton PR, Goodnow TT, Kaifer AE, Reddington MW, Slawin AMZ, Spencer N, Stoddart JF, Vicent C, Williams DJ (1989) Angew Chem Int Ed Engl 28:1396

    Google Scholar 

  57. Raymo FM, Stoddart JF (2001) Switchable Catenanes, Molecular Shuttles. In: Feringa BL (ed) Molecular Switches. Wiley, Weinheim, p 219

    Google Scholar 

  58. Castro R, Nixon KR, Evanseck JD, Kaifer AE (1996) J Am Chem Soc 61:7298

    CAS  Google Scholar 

  59. Wudl F, Smith GM, Hufnagel EJ (1970) Chem Commun 1453

    Google Scholar 

  60. Philp D, Slawin AMZ, Spencer N, Stoddart JF (1991) Chem Commun 1584

    Google Scholar 

  61. Ballardini R, Balzani V, Dehaen W, Dell'erba AE, Raymo FM, Stoddart JF, Venturi M (2000) Eur J Org Chem 591

    Google Scholar 

  62. Collier CP, Mattersteig G, Wong EW, Luo Y, Beverly K, Sampaio J, Raymo FM, Stoddart JF, Heath JR (2000) Science 289:1172

    Article  CAS  ISI  Google Scholar 

  63. Wong EW, Collier CP, Behloradsky M, Raymo FM, Stoddart JF, Heath JR (2000) J Am Chem Soc 122:5831

    CAS  Google Scholar 

  64. Collier CP, Jeppesen JO, Luo Y, Perkins J, Wong EW, Heath JR, Stoddart JF (2001) J Am Chem Soc 123:12632

    CAS  Google Scholar 

  65. Diehl MR, Steuerman DW, Tseng HR, Vignon SA, Star A, Celestre PC, Stoddart JF, Heath JR (2003) ChemPhysChem 3:519

    Google Scholar 

  66. Choi JW, Steuerman DW, Nygaard S, Flood AH, Braunschweig AB, Moonen NNP, Laursen BW, Luo Y, DeIonno E, Peter AJ, Jeppesen JO, Stoddart JF, Heath JR (2005) Chem Eur J, accepted

    Google Scholar 

  67. Asakawa M, Dehaen W, L'abbe G, Menzer S, Nouwen J, Raymo FM, Stoddart JF, Williams DJ (1996) J Org Chem 61:9591

    CAS  Google Scholar 

  68. Anelli PL, Spencer N, Stoddart JF (1991) J Am Chem Soc 113:5131

    Article  CAS  Google Scholar 

  69. Fyfe MCT, Stoddart JF (1997) Acc Chem Res 30:393

    Article  CAS  Google Scholar 

  70. Bissell RA, Córdova E, Kaifer AE, Stoddart JF (1994) Nature 369:133

    Article  CAS  ISI  Google Scholar 

  71. Nielsen MB, Jeppesen JO, Lau J, Lomholt C, Damgaard D, Jacobsen JP, Becher J, Stoddart JF (2001) Potential vs. Ag/AgCl in MeCN. Ka determined by UV/Vis dilution studies in MeCN at 22 °C. J Org Chem 66:3559

    Article  CAS  Google Scholar 

  72. Córdova E, Bissell RA, Kaifer AE (1995) Potential vs. Ag/AgCl in MeCN. J Org Chem 60:1033

    Google Scholar 

  73. Balzani V, Credi A, Mattersteig G, Matthews OA, Raymo FM, Stoddart JF, Venturi M, White AJP, Williams DJ (2000) J Org Chem 65:1924

    CAS  Google Scholar 

  74. Anelli PL, Ashton PR, Ballardini R, Balzani V, Delgado M, Gandolfi MT, Goodnow TT, Kaifer AE, Philp D, Pietraszkiewicz M, Prodi L, Reddington MV, Slawin AMZ, Spencer N, Stoddart JF, Vicent C, Williams DJ (1992) J Am Chem Soc 114:193

    Article  CAS  Google Scholar 

  75. Córdova E, Bissell RA, Spencer N, Ashton PR, Stoddart JF, Kaifer AE (1993) J Org Chem 58:6550

    Google Scholar 

  76. Devonport W, Blower MA, Bryce MR, Goldenberg LM (1997) Ka determined by UV/Vis dilution studies in MeCN at 21 °C. J Org Chem 62:885

    Article  CAS  Google Scholar 

  77. Mirzoian A, Kaifer AE (1995) J Org Chem 60:8093

    Article  CAS  Google Scholar 

  78. Smitzrud DB, Diederich F (1990) J Am Chem Soc 112:339

    Google Scholar 

  79. Kosower EM (1958) J Am Chem Soc 80:3253

    CAS  Google Scholar 

  80. Reichardt C (1988) In: Solvents and Solvent Effects in Organic Chemistry, 2nd ed. Wiley, Weinheim, chap 7, p 339

    Google Scholar 

  81. Kang S, Vignon SA, Tseng H-R, Stoddart JF (2004) Chem Eur J 10:2555

    Article  CAS  Google Scholar 

  82. Tseng HR, Vignon SA, Stoddart JF (2003) Angew Chem Int Ed 42:1491

    Article  CAS  Google Scholar 

  83. Tseng HR, Vignon SA, Celestre PC, Perkins J, Jeppesen JO, Di Fabio A, Ballardini R, Gandolfi MT, Venturi M, Balzani V, Stoddart JF (2004) Chem Eur J 10:155

    Article  CAS  Google Scholar 

  84. Tseng HR, Wu D, Fang NX, Zhang X, Stoddart JF (2004) ChemPhysChem 5:111

    CAS  Google Scholar 

  85. Flood AH, Stoddart JF, Steuerman DW, Heath JR (2004) Science 306:2055

    Article  CAS  ISI  Google Scholar 

  86. Steuerman DW, Tseng HR, Peters AJ, Flood AH, Jeppesen JO, Nielsen KA, Stoddart JF, Heath JR (2004) Angew Chem Int Ed 43:6486

    Article  CAS  Google Scholar 

  87. Flood AH, Peters AJ, Vignon SA, Steuerman DW, Tseng HR, Kang S, Heath JR, Stoddart JF (2004) Chem Eur J 10:6558

    Article  CAS  Google Scholar 

  88. Jang SS, Jang YH, Kim YH, Goddard III WA, Flood AH, Laursen BW, Tseng HR, Stoddart JF, Jeppesen JO, Choi JW, Steuerman DW, Delonno E, Heath JR (2005) J Am Chem Soc 127:1563

    CAS  Google Scholar 

  89. Jeppesen JO, Perkins J, Becher J, Stoddart JF (2001) Angew Chem Int Ed 40:1216

    Article  CAS  Google Scholar 

  90. Jeppesen JO, Nielsen KA, Perkins J, Vignon SA, Di Fabio A, Ballardini R, Gandolfi MT, Venturi M, Balzani V, Becher J, Stoddart JF (2003) Chem Eur J 9:2982

    CAS  Google Scholar 

  91. Jeppesen JO, Vignon SA, Stoddart JF (2003) Chem Eur J 9:4611

    CAS  Google Scholar 

  92. Jeppesen JO, Nygaard S, Vignon SA, Stoddart JF (2005) Eur J Org Chem 196

    Google Scholar 

  93. Laursen BW, Nygaard S, Jeppesen JO, Stoddart JF (2004) Org Lett 6:4167

    CAS  Google Scholar 

  94. Anelli PL, Asakawa M, Ashton PR, Bissell RA, Clavier G, Górski R, Kaifer AE, Langford SJ, Mattersteig G, Menzer S, Philp D, Slawin AMZ, Spencer N, Stoddart JF, Tolley MS, Williams DJ (1997) Chem Eur J 3:1113

    CAS  Google Scholar 

  95. Yamamoto T, Tseng HR, Stoddart JF, Balzani V, Credi A, Marchioni P, Venturi M (2003) There are indications for a folded conformation of the rotaxane in which there are π–π interactions between the TTF and the outer π-surface of the tetracation, see: Collect Czech Chem Commun 68:1488

    Google Scholar 

  96. Ashton PR, Blower M, Philp D, Spencer N, Stoddart JF, Tolley MS, Ballardini R, Ciano M, Balzani V, Gandolfi MT, Prodi L, McLean CH (1993) New J Chem 17:689

    CAS  Google Scholar 

  97. As a generalization, the absolute values of ∆(∆Ha) and ∆(∆Sa) are taken. This scheme would not be valid in the extreme case in which ∆(∆Ha) and ∆(∆Sa) are both large and opposite in sign. In that case, always very good population ratios will be found. The design of such a system would be a major challenge

    Google Scholar 

  98. Kramers H (1940) Physica 7:284

    Article  CAS  ISI  Google Scholar 

  99. Grote RF, Hynes JT (1980) J Chem Phys 73:2715

    Article  CAS  Google Scholar 

  100. Grote RF, Hynes JT (1981) J Chem Phys 74:4465

    Article  CAS  Google Scholar 

  101. Sumi H, Marcus RA (1986) J Chem Phys 84:4894

    CAS  Google Scholar 

  102. Sumi H (1995) J Mol Liq 65/66:65

    Article  CAS  Google Scholar 

  103. Ansari A, Jones CM, Henry ER, Hofrichter J, Eaton WA (1992) Science 256:1796

    CAS  ISI  Google Scholar 

  104. Jacob M, Greeves M, Holtermann G, Schmid FA (1999) Nat Struct Biol 6:923

    CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Science Foundation (NSF), the Molectronics Program of the Defense Advanced Research Project Agency (DARPA), the Microelectronics Advance Research Corporation (MARCO) and its Focus Center on Functional Engineered NanoArchitectonics (FENA) and the Center for Nanoscale Innovation for Defense (CNID) in the US. NNPM acknowledges the Netherlands Organization for Scientific Research (NWO) for a TALENT fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fraser Stoddart .

Editor information

T. Ross Kelly

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Moonen, N.N.P., Flood, A.H., Fernández, J.M., Stoddart, J.F. Towards a Rational Design of Molecular Switches and Sensors from their Basic Building Blocks. In: Kelly, T.R. (eds) Molecular Machines. Topics in Current Chemistry, vol 262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_009

Download citation

Publish with us

Policies and ethics