Skip to main content

Artificial Molecular Motors and Machines: Design Principles and Prototype Systems

  • Chapter
  • First Online:
Molecular Machines

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 262))

Abstract

A molecular machine can be defined as an assembly of a discrete number of molecular components (that is, a supramolecular structure) designed to perform a function through the mechanical movements of its components, which occur under appropriate external stimulation. Hence, molecular machines contain a motor part, that is a device capable of converting energy into mechanical work. Molecular motors and machines operate via nuclear rearrangements and, like their macroscopic counterparts, are characterized by the kind of energy input supplied to make them work, the manner in which their operation can be monitored, the possibility to repeat the operation at will, i.e., establishing a cyclic process, the time scale needed to complete a cycle of operation, and the performed function. Owing to the progress made in several branches of Chemistry, and to the better understanding of the operation mechanisms of molecular machines of the biological world, it has become possible to design and construct simple prototypes of artificial molecular motors and machines. The extension of the concept of machine to the molecular level is of great interest not only for basic research, but also for the growth of nanoscience and the development of nanotechnology. We will illustrate some basic features and design principles of molecular machines, and we will describe a few recent examples of artificial systems, based on rotaxanes, catenanes and related species, taken from our own research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AMH:

ammonium center

BPM:

4,4′-bipyridinium unit

CT:

charge transfer

DB24C8:

dibenzo[24]crown-8

DON:

1,5-dioxynaphthalene unit

SCE:

saturated calomel electrode

TTF:

tetrathiafulvalene unit

References

  1. Keyes RW (2001) Proc IEEE 89:227, see also the International Technology Roadmap for Semiconductors (ITRS), 2004 Edition, available at http://public.itrs.net

  2. Feynman RP (1960) Eng Sci 23:22

    Google Scholar 

  3. Feynman RP (1960) Saturday Rev 43:45; see also: http://www.feynmanonline.com

  4. Drexler KE (1986) Engines of Creation–-The Coming Era of Nanotechnology. Anchor Press, New York

    Google Scholar 

  5. Drexler KE (1992) Nanosystems. Molecular Machinery, Manufacturing, and Computation. Wiley, New York

    Google Scholar 

  6. Smalley RE (2001) Sci Am 285:76

    Article  CAS  Google Scholar 

  7. Joachim C, Launay JP (1984) Nouv J Chem 8:723

    CAS  Google Scholar 

  8. Balzani V, Moggi L, Scandola F (1987) In: Balzani V (ed) Supramolecular Photochemistry. Reidel, Dordrecht, p 1

    Google Scholar 

  9. Lehn JM (1990) Angew Chem Int Ed Engl 29:1304

    Article  Google Scholar 

  10. Aviram A, Ratner MA (1974) Chem Phys Lett 29:277

    Article  CAS  Google Scholar 

  11. Carter FL (ed) (1982) Molecular Electronic Devices. Dekker, New York

    Google Scholar 

  12. Metzger RM (2003) Chem Rev 103:3803 and references therein

    Article  CAS  Google Scholar 

  13. Lehn JM (1995) Supramolecular Chemistry–-Concepts and Perspectives. VCH, Weinheim

    Google Scholar 

  14. Lehn JM, Atwood JL, Davies JED, MacNicol DD, Vögtle F (eds) (1996) Comprehensive Supramolecular Chemistry. Pergamon, Oxford

    Google Scholar 

  15. Steed JW, Atwood JL (2000) Supramolecular Chemistry. Wiley, New York

    Google Scholar 

  16. Atwood JL, Steed JW (eds) (2004) Encyclopedia of Supramolecular Chemistry. Dekker, New York

    Google Scholar 

  17. Rigler R, Orrit M, Talence I, Basché T (2001) Single Molecule Spectroscopy. Springer, Berlin Heidelberg New York

    Google Scholar 

  18. Moerner WE (2002) J Phys Chem B 106:910

    Article  CAS  Google Scholar 

  19. Zander C, Enderlein J, Keller RA (2002) Single Molecule Detection in Solution. Wiley-VCH, Weinheim

    Google Scholar 

  20. Gimzewski JK, Joachim C (1999) Science 283:1683

    Article  CAS  ISI  Google Scholar 

  21. Hla SW, Meyer G, Rieder KH (2001) Chem Phys Chem 2:361

    CAS  Google Scholar 

  22. Samorì B, Zuccheri G, Baschieri P (2005) Chem Phys Chem 6:29

    Google Scholar 

  23. See e.g.: Christ T, Kulzer F, Bordat P, Basché T (2001) Angew Chem Int Ed 40:4192

    Google Scholar 

  24. Goodsell DS (2004) Bionanotechnology–-Lessons from Nature. Wiley, New York

    Google Scholar 

  25. Balzani V, Credi A, Raymo FM, Stoddart JF (2000) Angew Chem Int Ed 39:3348

    Article  CAS  Google Scholar 

  26. (2001) Acc Chem Res 34, no 6. Special Issue on Molecular Machines

    Google Scholar 

  27. (2001) Struct Bond 99. Special Volume on Molecular Machines and Motors

    Google Scholar 

  28. Balzani V, Credi A, Venturi M (2003) Molecular Devices and Machines–-A Journey into the Nano World. Wiley-VCH, Weinheim

    Google Scholar 

  29. Sauvage JP (2005) Chem Comm 1507

    Google Scholar 

  30. Akkerman OS, Coops J (1967) Rec Trav Chim Pays-Bas 86:755

    CAS  Google Scholar 

  31. Cozzi F, Guenzi A, Johnson CA, Mislow K, Hounshell WD, Blount JF (1981) J Am Chem Soc 103:957

    Article  CAS  Google Scholar 

  32. Bedard TC, Moore JS (1995) J Am Chem Soc 117:10662

    Article  CAS  Google Scholar 

  33. Dominguez Z, Khuong TAV, Dang H, Sanrame CN, Nunez JE, Garcia-Garibay MA (2003) J Am Chem Soc 125:8827

    CAS  Google Scholar 

  34. Shima T, Hampel F, Gladysz JA (2004) Angew Chem Int Ed 43:5537

    CAS  Google Scholar 

  35. Khuong TAV, Zepeda G, Sanrame CN, Dang H, Bartbeger MD, Houk KN, Garcia-Garibay MA (2004) J Am Chem Soc 126:14778

    Article  CAS  Google Scholar 

  36. Kottas GS, Clarke LI, Horinek D, Michl J (2005) Chem Rev 105:1281

    Article  CAS  Google Scholar 

  37. Astumian RD, Hänggi P (2002) Phys Today 55:33

    Google Scholar 

  38. Parisi G (2005) Nature 433:221

    Article  CAS  ISI  Google Scholar 

  39. Astumian RD (2005) Proc Natl Acad Sci USA 102:1843

    Article  CAS  Google Scholar 

  40. Ballardini R; Balzani V, Credi A, Gandolfi MT, Venturi M (2001) Acc Chem Res 34:445

    Google Scholar 

  41. Balzani V, Scandola F (1991) Supramolecular Photochemistry. Horwood, Chichester

    Google Scholar 

  42. Armaroli N (2003) Photochem Photobiol Sci 2:73

    CAS  Google Scholar 

  43. Balzani V (2003) Photochem Photobiol Sci 2:479

    Google Scholar 

  44. Kaifer AE, Gómez-Kaifer M (1999) Supramolecular Electrochemistry. Wiley-VCH, Weinheim

    Google Scholar 

  45. Marcaccio M, Paolucci F, Roffia S (2004) In: Pombeiro AJL, Amatore C (eds) Trends in Molecular Electrochemistry. Dekker, New York, p 223

    Google Scholar 

  46. Balzani V, Credi A, Venturi M (2003) ChemPhysChem 4:49

    CAS  Google Scholar 

  47. Schliwa M (ed) (2003) Molecular Motors. Wiley-VCH, Weinheim

    Google Scholar 

  48. Schliwa M, Woehlke G (2003) Nature 422:759

    Article  CAS  ISI  Google Scholar 

  49. Boyer PD (1993) Biochim Biophys Acta 1140:215

    CAS  Google Scholar 

  50. Boyer PD (1998) Angew Chem Int Ed 37:2296

    Article  Google Scholar 

  51. Walker JE (1998) Angew Chem Int Ed 37:2308

    Article  CAS  Google Scholar 

  52. Stock D, Leslie AGW, Walker JE (1999) Science 286:700

    Article  Google Scholar 

  53. Vale RD, Milligan RA (2000) Science 288:88

    Article  CAS  ISI  Google Scholar 

  54. Frey E (2002) ChemPhysChem 3:270

    CAS  Google Scholar 

  55. Steinberg-Yfrach G, Rigaud JL, Durantini EN, Moore AL, Gust D, Moore TA (1998) Nature 392:479

    CAS  ISI  Google Scholar 

  56. Soong RK, Bachand GD, Neves HP, Olkhovets AG, Craighead HG, Montemagno CD (2000) Science 290:1555

    Article  CAS  ISI  Google Scholar 

  57. Hess H, Bachand GD, Vogel V (2004) Chem Eur J 10:2110

    Article  CAS  Google Scholar 

  58. Kelly TR, De Silva H, Silva RA (1999) Nature 401:150

    Article  CAS  ISI  Google Scholar 

  59. Koumura N, Zijlstra RWJ, van Delden RA, Harada N, Feringa BL (1999) Nature 401:152

    CAS  ISI  Google Scholar 

  60. Kelly TR, Silva RA, De Silva H, Jasmin S, Zhao YJ (2000) J Am Chem Soc 12:6935

    Google Scholar 

  61. van Delden RA, Koumura N, Schoevaars A, Meetsma A, Feringa BL (2003) Org Biomol Chem 1:33

    Google Scholar 

  62. Zheng XL, Mulcahy ME, Horinek D, Galeotti F, Magnera TF, Michl J (2004) J Am Chem Soc 126:4540

    CAS  Google Scholar 

  63. Shinkai S, Ikeda M, Sugasaki A, Takeuchi M (2001) Acc Chem Res 34:494

    Article  CAS  Google Scholar 

  64. Gray M, Cuello AO, Cooke G, Rotello VM (2003) J Am Chem Soc 125:7882

    CAS  Google Scholar 

  65. Moon K, Grindstaff J, Sobransingh D, Kaifer AE (2004) Angew Chem Int Ed 43:5496

    Article  CAS  Google Scholar 

  66. Jeon WS, Kim E, Ko YH, Hwang IH, Lee JW, Kim SY, Kim HJ, Kim K (2005) Angew Chem Int Ed 44:87

    Article  CAS  Google Scholar 

  67. Mao C, Sun W, Shen Z, Seeman NC (1999) Nature 397:144

    CAS  ISI  Google Scholar 

  68. Yurke B, Turberfield AJ, Mills AP Jr, Simmel FC, Neumann JL (2000) Nature 406:605

    CAS  ISI  Google Scholar 

  69. Yan H, Zhang X, Shen Z, Seeman NC (2002) Nature 415:82

    Article  CAS  Google Scholar 

  70. Li JJ, Tan W (2002) Nano Lett 2:315

    CAS  ISI  Google Scholar 

  71. Chen Y, Wang M, Mao C (2004) Angew Chem Int Ed 43:3554

    CAS  Google Scholar 

  72. Chen Y, Mao C (2004) J Am Chem Soc 126:8626

    CAS  Google Scholar 

  73. Yin P, Yan H, Daniell XG, Turberfield AJ, Reif JH (2004) Angew Chem Int Ed 43:4906

    Article  CAS  Google Scholar 

  74. Sherman WB, Seeman NC (2004) Nano Lett 4:1203

    CAS  ISI  Google Scholar 

  75. Sauvage JP, Dietrich-Buchecker C (eds) (1999) Molecular Catenanes, Rotaxanes and Knots. Wiley-VCH, Weinheim

    Google Scholar 

  76. Chambron JC, Dietrich-Buchecker CO, Sauvage JP (1993) Top Curr Chem 165:131

    CAS  Google Scholar 

  77. Gibson HW, Bheda MC, Engen PT (1994) Prog Polym Sci 19:843

    Article  CAS  Google Scholar 

  78. Amabilino DB, Stoddart JF (1995) Chem Rev 95:2725

    Article  CAS  Google Scholar 

  79. Johnston AG, Leigh DA, Pritchard RJ, Degan MD (1995) Angew Chem Int Ed Engl 34:1209

    CAS  Google Scholar 

  80. Jäger R, Vögtle F (1997) Angew Chem Int Ed 36:930

    Google Scholar 

  81. Fujita M (1999) Acc Chem Res 32:53

    Article  CAS  Google Scholar 

  82. Ishow E, Credi A, Balzani V, Spadola F, Mandolini L (1999) Chem Eur J 5:984

    Article  CAS  Google Scholar 

  83. Ballardini R, Balzani V, Clemente-Léon M, Credi A, Gandolfi MT, Ishow E, Perkins J, Stoddart JF, Tseng HR, Wenger S (2002) J Am Chem Soc 124:12786

    Article  CAS  Google Scholar 

  84. Anelli PL, Spencer N, Stoddart JF (1991) J Am Chem Soc 113:5131

    Article  CAS  Google Scholar 

  85. Bissell A, Córdova E, Kaifer AE, Stoddart JF (1994) Nature 369:133

    Article  CAS  ISI  Google Scholar 

  86. Elizarov AM, Chiu SH, Stoddart JF (2002) J Org Chem 67:9175

    Article  CAS  Google Scholar 

  87. Tseng HR, Vignon SA, Stoddart JF (2003) Angew Chem Int Ed 42:1491

    Article  CAS  Google Scholar 

  88. Keaveney CM, Leigh DA (2004) Angew Chem Int Ed 43:1222

    Article  CAS  Google Scholar 

  89. Leigh DA, Perez EM (2004) Chem Comm 2262

    Google Scholar 

  90. Tseng HR, Vignon SA, Celestre PC, Perkins J, Jeppesen JO, Di Fabio A, Ballardini R, Gandolfi MT, Venturi M, Balzani V, Stoddart JF (2004) Chem Eur J 10:155

    Article  CAS  Google Scholar 

  91. Altieri A, Gatti FG, Kay ER, Leigh DA, Martel D, Paolucci F, Slawin AMZ, Wong JKY (2003) J Am Chem Soc 125:8644

    Article  CAS  Google Scholar 

  92. Willner I, Pardo-Yssar V, Katz E, Ranjit KT (2001) J Electroanal Chem 497:172

    Article  CAS  Google Scholar 

  93. Wang QC, Qu DH, Ren J, Chen KC, Tian H (2004) Angew Chem Int Ed 43:2661

    CAS  Google Scholar 

  94. Abraham W, Grubert L, Grummt UW, Buck K (2004) Chem Eur J 10:3562

    Article  CAS  Google Scholar 

  95. Ashton PR, Ballardini R, Balzani V, Baxter I, Credi A, Fyfe MCT, Gandolfi MT, Gomez-Lopez M, Martinez-Diaz MV, Piersanti A, Spencer N, Stoddart JF, Venturi M, White AJP, Williams DJ (1998) J Am Chem Soc 120:11932

    CAS  Google Scholar 

  96. Garaudée S, Credi A, Silvi S, Venturi M, Stoddart JF (2005) ChemPhysChem 6:2145

    Google Scholar 

  97. Balzani V, Clemente-Leon M, Credi A, Lowe JN, Badjic JD, Stoddart JF, Williams DJ (2003) Chem Eur J 9:5348

    Article  CAS  Google Scholar 

  98. Badjic JD, Balzani V, Credi A, Silvi S, Stoddart JF (2004) Science 303:1845

    Article  CAS  ISI  Google Scholar 

  99. The molecular elevator operates in solution, i.e. with no control of the orientation of the molecules relative to a fixed reference system. Therefore, in the present context the words “upper” and “lower” are used only for descriptive purposes

    Google Scholar 

  100. Monk PMS (1998) The Viologens–-Physicochemical Properties, Synthesis and Application of the Salts of 4,4′-Bipyridine. Wiley, Chichester

    Google Scholar 

  101. Brouwer AM, Frochot C, Gatti FG, Leigh DA, Mottier L, Paolucci F, Roffia S, Wurpel GWH (2001) Science 291:2124

    Article  CAS  ISI  Google Scholar 

  102. Ballardini R, Balzani V, Gandolfi MT, Prodi L, Venturi M, Philp D, Ricketts HG, Stoddart JF (1993) Angew Chem Int Ed Engl 32:1301

    Article  Google Scholar 

  103. Ashton PR, Ballardini R, Balzani V, Boyd SE, Credi A, Gandolfi MT, Gomez-Lopez M, Iqbal S, Philp D, Preece JA, Prodi L, Ricketts HG, Stoddart JF, Tolley MS, Venturi M, White AJP, Williams DJ (1999) Chem Eur J 3:152

    Google Scholar 

  104. Ashton PR, Ballardini R, Balzani V, Constable EC, Credi A, Kocian O, Langford SJ, Preece JA, Prodi L, Schofield ER, Spencer N, Stoddart JF, Wenger S (1998) Chem Eur J 4:2413

    CAS  Google Scholar 

  105. Ashton PR, Balzani V, Kocian O, Prodi L, Spencer N, Stoddart JF (1998) J Am Chem Soc 120:11190

    CAS  Google Scholar 

  106. Ashton PR, Ballardini R, Balzani V, Credi A, Dress R, Ishow E, Kleverlaan CJ, Kocian O, Preece JA, Spencer N, Stoddart JF, Venturi M, Wenger S (2000) Chem Eur J 6:3558

    CAS  Google Scholar 

  107. Ballardini R, Balzani V, Credi A, Gandolfi MT, Venturi M (2001) Int J Photoenergy 3:63

    CAS  Google Scholar 

  108. Balzani V, Clemente-León M, Credi A, Ferrer B, Venturi M, Flood AH, Stoddart JF (submitted)

    Google Scholar 

  109. Asakawa M, Ashton PR, Balzani V, Credi A, Hamers C, Mattersteig G, Montalti M, Shipway AN, Spencer N, Stoddart JF, Tolley MS, Venturi M, White AJP, Williams DJ (1998) Angew Chem Int Ed 37:333

    Article  CAS  Google Scholar 

  110. Balzani V, Credi A, Mattersteig G, Matthews OA, Raymo FM, Stoddart JF, Venturi M, White AJP, Williams DJ (2000) J Org Chem 65:1924

    CAS  Google Scholar 

  111. Collier CP, Mattersteig G, Wong EW, Luo Y, Beverly K, Sampaio J, Raymo FM, Stoddart JF, Heath JR (2000) Science 289:1172

    Article  CAS  ISI  Google Scholar 

  112. Luo Y, Collier CP, Jeppesen JO, Nielsen KA, Delonno E, Ho G, Perkins J, Tseng HR, Yamamoto T, Stoddart JF, Heath JR (2002) ChemPhysChem 3:519

    CAS  Google Scholar 

  113. Steuerman DW, Tseng HR, Peters AJ, Flood AH, Jeppesen JO, Nielsen KA, Stoddart JF, Heath JR (2004) Angew Chem Int Ed 43:6486

    Article  CAS  Google Scholar 

  114. Ref [97], ch 16

    Google Scholar 

  115. Hernández JV, Kay ER, Leigh DA (2004) Science 306:1532

    Google Scholar 

  116. Ashton PR, Baldoni V, Balzani V, Credi A, Hoffmann HDA, Martinez-Diaz MV, Raymo FM, Stoddart JF, Venturi M (2001) Chem Eur J 7:3482

    Article  CAS  Google Scholar 

  117. Leigh DA, Wong JKY, Dehez F, Zerbetto F (2003) Nature 424:174

    Article  CAS  ISI  Google Scholar 

  118. Mobian P, Kern JM, Sauvage JP (2004) Angew Chem Int Ed 43:2392

    Article  CAS  Google Scholar 

  119. Cavallini M, Biscarini F, Leon S, Zerbetto F, Bottari G, Leigh DA (2003) Science 299:531

    Article  CAS  ISI  Google Scholar 

  120. Long B, Nikitin K, Fitzmaurice D (2003) J Am Chem Soc 125:5152

    CAS  Google Scholar 

  121. Álvaro M, Ferrer B, García H, Palomares EJ, Balzani V, Credi A, Venturi M, Stoddart JF, Wenger S (2003) J Phys Chem B 107:14319

    Google Scholar 

  122. Huang TJ, Tseng HR, Sha L, Lu WX, Brough B, Flood AH, Yu BD, Celestre PC, Chang JP, Stoddart JF, Ho CM (2004) Nano Lett 4:2065

    CAS  ISI  Google Scholar 

  123. Hernandez R, Tseng HR, Wong JW, Stoddart JF, Zink JI (2004) J Am Chem Soc 126:3370

    Article  CAS  Google Scholar 

  124. Katz E, Lioubashevsky O, Willner I (2004) J Am Chem Soc 126:15520

    Article  CAS  Google Scholar 

  125. Cecchet F, Rudolf P, Rapino S, Margotti M, Paolucci F, Baggerman J, Brouwer AM, Kay ER, Wong JKY, Leigh DA (2004) J Phys Chem B 108:15192

    Article  CAS  Google Scholar 

  126. Flood AH, Peters AJ, Vignon SA, Steuerman DW, Tseng HR, Kang S, Heath JR, Stoddart JF (2004) Chem Eur J 10:6558

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. J. Fraser Stoddart and his group for a long lasting and fruitful collaboration. Financial support from the EU (STREP “Biomach” NMP2-CT-2003-505487), Ministero dell'Istruzione, dell'Università e della Ricerca (PRIN “Supramolecular Devices” and FIRB RBNE019H9K), and Università di Bologna (Funds for Selected Research Topics) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Credi .

Editor information

T. Ross Kelly

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Balzani, V., Credi, A., Ferrer, B., Silvi, S., Venturi, M. Artificial Molecular Motors and Machines: Design Principles and Prototype Systems. In: Kelly, T.R. (eds) Molecular Machines. Topics in Current Chemistry, vol 262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_008

Download citation

Publish with us

Policies and ethics