Skip to main content

Molecular Markers for Genetic Diversity

  • Chapter
  • First Online:
Progress in Botany Vol. 79

Part of the book series: Progress in Botany ((BOTANY,volume 79))

Abstract

Markers are essential for categorising the living creatures. Starting from using visible features, science made the hidden characters visible, eventually using the material of inheritance, the DNA as source of markers. This chapter allows an insight into the different types of DNA based marker systems, guiding the reader through marker systems either with or without preliminary sequence information, with low and the nowadays so powerful high throughput technologies.

Communicated by Francisco M Cánovas

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376

    Article  PubMed  PubMed Central  Google Scholar 

  • Balsalobre TWA, da Silva Pereira G, Margarido GRA et al (2017) GBS-based single dosage markers for linkage and QTL mapping allow gene mining for yield-related traits in sugarcane. BMC Genomics 18:72. doi:10.1186/s12864-016-3383-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbazuk WB, Emrich SJ, Chen HD, Li L, Schnable PS (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51:910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behjati S, Tarpey PS (2013) What is next generation sequencing? Arch Dis Child Educ Pract Ed 98:236–238. doi:10.1136/archdischild-2013-304340

    Article  PubMed  PubMed Central  Google Scholar 

  • Bendich AJ (1987) Why do chloroplasts and mitochondria contain so many copies of their genome? Bioessays 6:279–282

    Article  CAS  PubMed  Google Scholar 

  • Caetano-Anollés G, Bassam BJ, Gresshoff PM (1991) DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Nat Biotechnol 9:553–557. doi:10.1038/nbt0691-553

    Article  Google Scholar 

  • Cao M, Shi J, Wang J, Hong J, Cui B, Ning G (2015) Analysis of human triallelic SNPs by next-generation sequencing. Ann Hum Genet 79:275–281. doi:10.1111/ahg.12114

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Sullivan PF (2003) Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughput. Pharmacogenomics J 3:77–96. doi:10.1038/sj.tpj.6500167

    Article  PubMed  Google Scholar 

  • Davey JW, Blaxter ML (2010) RADSeq: next-generation population genetics. Brief Funct Genomics 9:416–423. doi:10.1093/bfgp/elq031

    Article  CAS  PubMed  Google Scholar 

  • Demesure B, Sodzi N, Petit R (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–134

    Article  CAS  PubMed  Google Scholar 

  • Deschamps S, Llaca V, May GD (2012) Genotyping-by-sequencing in plants. Biology 1:460–483. doi:10.3390/biology1030460

    Article  PubMed  PubMed Central  Google Scholar 

  • Diekmann S (1989) The migration anomaly of DNA fragments in polyacrylamide gels allows the detection of small sequence-specific DNA structure variations. Electrophoresis 10:354–359

    Article  CAS  PubMed  Google Scholar 

  • Ebert D, Peakall R (2009) Chloroplast simple sequence repeats (cpSSRs): technical resources and recommendations for expanding cpSSR discovery and applications to a wide array of plant species. Mol Ecol Resour 9:673–690. doi:10.1111/j.1755-0998.2008.02319.x

    Article  CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. doi:10.1371/journal.pone.0019379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans TG (2015) Considerations for the use of transcriptomics in identifying the ‘genes that matter’ for environmental adaptation. J Exp Biol 218:1925–1935. doi:10.1242/jeb.114306

    Article  PubMed  Google Scholar 

  • Fauré S, Noyer JL, Carreel F, Horry JP, Bakry F, Lanaud C (1994) Maternal inheritance of chloroplast genome and paternal inheritance of mitochondrial genome in bananas (Musa acuminata). Curr Genet 25:265–269

    Article  PubMed  Google Scholar 

  • Fumagalli M, Vieira FG, Korneliussen TS, Linderoth T, Huerta-Sánchez E, Albrechtsen A, Nielsen R (2013) Quantifying population genetic differentiation from next-generation sequencing data. Genetics 195:979–992. doi:10.1534/genetics.113.154740

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganal MW, Polley A, Graner EM, Plieske J, Wieseke R, Luerssen H, Durstewitz G (2012) Large SNP arrays for genotyping in crop plants. J Biosci 37(5):821–828

    Article  CAS  PubMed  Google Scholar 

  • Gore MA, Wright MH, Ersoz ES, Bouffard P, Szekeres ES, Jarvie TP, Hurwitz BL, Narechania A, Harkins TT, Grills GS, Ware DH, Buckler ES (2009) Large-scale discovery of gene-enriched SNPs. Plant Gen 2:121–133

    Article  CAS  Google Scholar 

  • Hayden MJ, Sharp PJ (2001) Sequence-tagged microsatellite profiling (STMP): a rapid technique for developing SSR markers. Nucleic Acids Res 29:E43–E43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Zhao X, Laroche A, Lu Z-X, Liu HK, Li Z (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci. doi:10.3389/fpls.2014.00484

  • Heinze B (2007) A database of PCR primers for the chloroplast genomes of higher plants. Plant Methods 3:4. doi:10.1186/1746-4811-3-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Heslop-Harrison JS, Schmidt T (2012) Plant nuclear genome composition. In: eLS. Wiley Online Library. doi:10.1002/9780470015902.a0002014.pub2

  • Jiang Z, Wang H, Michal JJ, Zhou X, Liu B, Woods LCS, Fuchs RA (2016) Genome wide sampling sequencing for SNP genotyping: methods, challenges and future development. Int J Biol Sci 12:100–108. doi:10.7150/ijbs.13498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Huang S, Sun M, Liu S, Liu Y, Wang W, Xiurong Zhang X, Wang H, Hua W (2012) An improved allele-specific PCR primer design method for SNP marker analysis and its application. Plant Methods 8:34. doi:10.1186/1746-4811-8-34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maughan PJ, Yourstone SM, Jellen EN, Udall JA (2009) SNP discovery via genomic reduction, barcoding and 454-pyrosequencing in amaranth. Plant Gen 2:260–270

    Article  CAS  Google Scholar 

  • Maughan PJ, Yourstone SM, Byers RL, Smith SM, Udall JA (2010) Single-nucleotide polymorphism genotyping in mapping populations via genomic reduction and next-generation sequencing: proof of concept. Plant Gen. doi:10.3835/plantgenome2010.07.0016

    Google Scholar 

  • Mullaney JM, Mills RE, Pittard WS, Devine SE (2010) Small insertions and deletions (INDELs) in human genomes. Hum Mol Genet 19:R131–R136. doi:10.1093/hmg/ddq400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T, Ohyama K (1992) Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. J Mol Biol 223:1–7. doi:10.1016/0022-2836(92)90708-R

    Article  CAS  PubMed  Google Scholar 

  • Pootakham W, Shearman JR, Ruang-areerate P et al (2014) Large-scale SNP discovery through RNA sequencing and SNP genotyping by targeted enrichment sequencing in cassava (Manihot esculenta Crantz). PLoS One 9(12):e116028. doi:10.1371/journal.pone.0116028

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabinowicz PD, Citek R, Budiman MA et al (2005) Differential methylation of genes and repeats in land plants. Genome Res 15:1431–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100. doi:10.1016/S1369-5266(02)00240-6

    Article  CAS  PubMed  Google Scholar 

  • Rasmusson AG, Møller IM (2015) The genetic system in plant mitochondria has several special features. In: Taiz L, Zeiger E, Møller IM, Murphy A (eds) Plant physiology and development, 6th edn. Topic 12.6 published by Sinauer Associates

    Google Scholar 

  • Reddy MP, Sarla N, Siddiq EA (2002) Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128:9–17

    Article  Google Scholar 

  • Rogers SM, Payton M, Allen RW, Melcher U, Carver J, Fletcher J (2012) Method: a single nucleotide polymorphism genotyping method for wheat streak mosaic virus. Investigative Genet 3:10. doi:10.1186/2041-2223-3-10

    Article  CAS  Google Scholar 

  • Shen R, Fan J-B, Campbell D, Jing W, Chang W, Chen J, Doucet D, Yeakley J, Bibikova M, Wickham Garcia ME, McBride C, Steemers F, Garcia F, Kermani BG, Gunderson K, Oliphant A (2005) High-throughput SNP genotyping on universal bead arrays. Mutat Res 573:70–82. doi:10.1016/j.mrfmmm.2004.07.022

    Article  CAS  PubMed  Google Scholar 

  • Syed NH, Flavell AJ (2006) Sequence-specific amplification polymorphisms (SSAPs): a multi-locus approach for analyzing transposon insertions. Nat Protoc 1:2746–2752

    Article  CAS  PubMed  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Twyford AD, Ennos RA (2012) Next-generation sequencing as a tool for plant ecology and evolution. Plant Ecol Divers 5:411–413. doi:10.1080/17550874.2012.754513

    Article  Google Scholar 

  • Vartia S, Villanueva-Cañas JS, Finarelli J, Farrell ED et al (2016) A novel method of microsatellite genotyping-by-sequencing using individual combinatorial barcoding. R Soc Open Sci 3:150565. doi:10.1098/rsos.150565

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma S, Gupta S, Bandhiwal N, Kumar T, Bharadwaj C, Bhatia S (2015) High-density linkage map construction and mapping of seed trait QTLs in chickpea (Cicer arietinum L.) using genotyping-by-sequencing (GBS). Sci Rep 5:17512. doi:10.1038/srep17512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. doi:10.1093/nar/23.21.4407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. doi:10.1038/nrg2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weising K, Nybom H, Wolff K, Kahl G (2005) Properties of RAPD markers. In: DNA fingerprinting in plants. CRC Press, Taylor & Francis Group, p 37

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wischnitzki E, Sehr EM, Hansel-Hohl K, Berenyi M, Burg K, Fluch S (2015) How to isolate a plant’s hypomethylome in one shot. Biomed Res Int 2015:570568. doi:10.1155/2015/570568

    Article  PubMed  PubMed Central  Google Scholar 

  • Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, McCown B, Harbut R, Simon P (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193–208. doi:10.3732/ajb.1100394

    Article  CAS  PubMed  Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kornel Burg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Burg, K. (2017). Molecular Markers for Genetic Diversity. In: Cánovas, F., Lüttge, U., Matyssek, R. (eds) Progress in Botany Vol. 79. Progress in Botany, vol 79. Springer, Cham. https://doi.org/10.1007/124_2017_9

Download citation

Publish with us

Policies and ethics