Skip to main content

Recurrence Quantification Analysis of EEG Predicts Responses to Incision During Anesthesia

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4234))

Included in the following conference series:

Abstract

The need for assessing the depth of anesthesia during surgical operations has existed since the introduction of anaesthesia, but sufficiently reliable method is still not found. This paper presents a new approach to detect depth of anaesthesia by using recurrence quantification analysis of electroencephalogram (EEG) and artificial neural network(ANN). The EEG recordings were collected from consenting patient prior to incision during isoflurane anaesthesia of different levels. The four measures of recurrence plot were extracted from each of eight-channel EEG time series. Prediction was made by means of ANN. The system was able to correctly classify purposeful responses in average accuracy of 87.76% of the cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moerman, N., Bonke, B., Oosting, J.: Awareness and recall during general anesthesia: facts and feelings. Anesthesiology 79, 454–464 (1993)

    Article  Google Scholar 

  2. Ghoneim, M.M., Block, R.L.: Learning and consciousness during general anaesthesia. Anesthesiology 76, 279–305 (1992)

    Article  Google Scholar 

  3. Rubin, M.A., Freeman, H.: Brain potential changes in man during cyclopropane anesthesia. J. Neurophysiol. 3, 33–42 (1940)

    Google Scholar 

  4. Thomsen, C.E., Christensen, K.N., Rosenflack, A.: Computerized monitoring of depth of anaesthesia with isoflurane. Br. J. Anaesthesia 63, 36–43 (1989)

    Article  Google Scholar 

  5. Sharma, A., Roy, R.J.: Design of a recognition system to predict movement during anaesthesia. IEEE Trans. on Biomed. Eng. 44, 505–511 (1997)

    Article  Google Scholar 

  6. Kearse, L.A., Manberg, P., DeBros, F. (eds.): Bispectral analysis of the electroencephalo-gram during induction of anesthesia predict hemodynamic responses to laryngoscopy and intubation. Electroencephalography and clinical Neurophysiology 90, 194–200 (1994)

    Article  Google Scholar 

  7. Vernon, J.M., Lang, E., Sebel, P.S.: Prediction of movement using bispectral electroencephalographic analysis during propofol/alfentanil or isoflurane/alfentanil anesthesia. Anesth. Analg. 80, 780–785 (1995)

    Article  Google Scholar 

  8. Nayak, A., Roy, R.J., Sharma, A.: Time-frequency spectral representation of the EEG as an aid in the detection of depth of anaesthesia. Ann. Biomed. Eng. 22, 501–513 (1994)

    Article  Google Scholar 

  9. Eckmann, J.P., Kamphorst, S.O., Ruelle, D.: Recurrence plots of dynamical systems. Europhys. Lett. 4, 973–977 (1987)

    Article  Google Scholar 

  10. Zbilut, J.P., Webber Jr., C.L.: Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171, 199–203 (1992)

    Article  Google Scholar 

  11. Marwan, N., Wessel, N., Meyerfeldt, U. (eds.): Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Phys. Reviw. E 66, 26702 (2002)

    Article  Google Scholar 

  12. Lippmann, R.P.: An Introduction to Computing with Neural nets. IEEE ASSP Magazine, 4–22 (April 1987)

    Google Scholar 

  13. Mirchandami, G., Cao, W.: On hidden nodes for neural nets. IEEE Trans. on Circuits and System 36, 661–664 (1989)

    Article  Google Scholar 

  14. Vogel, M.A., Wong, A.K.C.: PFS clustering method. IEEE Trans. on Pattern Anal. Mach. Intell. 1, 237–245 (1979)

    Article  MATH  Google Scholar 

  15. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic, San Diego (1990)

    MATH  Google Scholar 

  16. Drummond, J.C., Brann, C.A., Perkins, D.E.: A comparison of median frequency, spectral edge frequency, a frequency band power ratio, total power, and dominance shift in determination of depth of anaesthesia. Acta Anaesthesiologica Scand 35, 693–699 (1991)

    Article  Google Scholar 

  17. Rampil, I.J., Matteo, R.S.: Changes in EEG spectral edge frequency correlate with the hemodynamic response to laryngoscopy and intubation. Anesthesiology 67, 139–142 (1987)

    Article  Google Scholar 

  18. Sebel, P.S., Bowles, S.M., Saini, V. (eds.): EEG bispectrum predicts movement during thiopental/isoflurane anaesthesia. J. Clin. Monit. 11, 83–91 (1995)

    Article  Google Scholar 

  19. Linkens, D.A.: Adaptive and intelligent control in anesthesia. IEEE Contr. Syst. Technol. Dec., 6–11 (1992)

    Google Scholar 

  20. Argyris, J.H., Faust, G., Haase, M.: An Exploration of Chaos. North-Holland, Amsterdam (1994)

    MATH  Google Scholar 

  21. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  22. Quasha, A.L., Eger, E.I., Tinker, H.H.: Determination and applications of MAC. Anesthesiol. 53, 315–334 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, L., Wang, W., Singare, S. (2006). Recurrence Quantification Analysis of EEG Predicts Responses to Incision During Anesthesia. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893295_7

Download citation

  • DOI: https://doi.org/10.1007/11893295_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46484-6

  • Online ISBN: 978-3-540-46485-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics