Skip to main content

Transcription Factor Centric Discovery of Regulatory Elements in Mammalian Genomes Using Alignment-Independent Conservation Maps

  • Conference paper
Comparative Genomics (RCG 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4205))

Included in the following conference series:

  • 367 Accesses

Abstract

The computational identification of DNA binding sites that have high affinity for a specific transcription factor is an important problem that has only been partially addressed in prokaryotes and lower eukaryotes. Given the higher length of regulatory regions and the relative low complexity of DNA binding signature, however, methods to address this problem in higher order eukaryotes are lacking. In this paper, we propose a novel computational framework, which combines cellular network reverse engineering, integrative genomics, and comparative genomic approaches, to address this problem for a set of human transcription factors. Specifically, we study the regulatory regions of putative orthologous targets of a given transcription factor, obtained by reverse engineering methods, in several mammalian genomes. Highly conserved regions are identified by pattern discovery. Finally DNA binding sites are inferred from these regions using a standard Position Weight Matrices (PWM) discovery algorithm. By framing the identification of the PWM as an optimization problem over the two parameters of the method, we are able to discover known binding sites for several genes and to propose reasonable signatures for genes that have not been previously characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S., Erickson, B.: Significance of nucleotide sequence alignments: A method for random sequence permutation that preserves dinucleotide and codon usage. Mol. Biol. Evol. 2, 528–538 (1985)

    Google Scholar 

  2. Basso, K., Margolin, A.A., Stolovitzky, G., Klein, U., Dalla-Favera, R., Califano, A.: Reverse engineering of regulatory networks in human B cells. Nat. Genetics 37, 382–390 (2005)

    Article  Google Scholar 

  3. Blanchette, M., Tompa, M.: Discovery of regulatory elements by a computational method for mphylogenetic footprinting. Genome Research 12, 739–748 (2002)

    Article  Google Scholar 

  4. Cardone, M., Kandilci, A.: The Novel ETS Factor TEL2 Cooperates with Myc in B Lyemphomagenesis. Molecular and Cellular Biology 25, 2395–2405 (2005)

    Article  Google Scholar 

  5. Califano, A.: SPLASH: structural pattern localization analysis by sequential histograms. Bioinformatics 16, 341–357 (2000)

    Article  Google Scholar 

  6. Chang, C., Ye, B., Chaganti, R., Dalla-Favera, R.: BCL6, a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor. PNAS 93, 6947–6952 (1996)

    Article  Google Scholar 

  7. Claverie, J.: Some useful statistical properties of position-weight matrices. Comput. Chemistry 18, 287–294 (1994)

    Article  MATH  Google Scholar 

  8. Cliften, P., Sudarsanam, P., Desikan, A., Fulton, L., Fulton, B., Majors, J., Waterston, R., Cohen, B.A., Johnston, M.: Finding functional features in Saccharomyces genomes by mphylogenetic footprinting. Science 301, 71–76 (2003)

    Article  Google Scholar 

  9. Elemento, O., Tavazoie, S.: Fast and systematic genome-wide discovery of conserved regulatory elements using a non-alignment based approach. Genome Biol. 6, R18 (2005)

    Article  Google Scholar 

  10. Harbison, C.T., Gordon, D.B., Lee, T.I., Rinaldi, N.J., Macisaac, K.D., Danford, T.W., Hannett, N.M., Tagne, J.B., Reynolds, D.B., Yoo, J., Jennings, E.G., Zeitlinger, J., Pokholok, D.K., Kellis, M., Rolfe, P.A., Takusagawa, K.T., Lander, E.S., Gifford, D.K., Fraenkel, E., Young, R.A.: Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004)

    Article  Google Scholar 

  11. Hong, S., Pusapati, R.V., Powers, J.T., Johnson, D.G.: Oncogenes and the DNA Damage Response: Myc and E2F1 Engage the ATM Signaling Pathway to Activate p53 and Induce Apoptosis. Cell. cycle 5, 801–803 (2005)

    Article  Google Scholar 

  12. Hartemink, A.J.: Reverse engineering gene regulatory networks. Nature Biotechnology 23, 554–555 (2005)

    Article  Google Scholar 

  13. Kharchenko, P., Vitkup, D., Church, G.M.: Filling gaps in a metabolic network using expression information. Bioinformatics 20, I178–I185 (2000)

    Article  Google Scholar 

  14. Lenhard, B., Sandelin, A., Mendoza, L., Engstrm, P., Jareborg, N., Wasserman, W.: Identification of conserved regulatory elements by comparative genome analysis. J. Biol. 2, 13 (2003)

    Article  Google Scholar 

  15. Liu, Y., Liu, X.S., Wei, L., Altman, R.B., Batzoglou, S.: Eukaryotic regulatory element conservation analysis and identification using comparative genomics. Genome Res. 3, 451–458 (2004)

    Article  Google Scholar 

  16. Docquier, F., Farrar, D., D’Arcy, V., Chernukhin, I., Robinson, A.F., Loukinov, D., Vatolin, S., Pack, S., Mackay, A., Harris, R.A., Dorricott, H., O’Hare, M.J., Lobanenkov, V., Klenova, E.: Heightened expression of CTCF in breast cancer cells is associated with resistance to apoptosis Cancer Research 65, 5122–5125 (2005)

    Google Scholar 

  17. Margolin, A.A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R., Califano, A.: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context. BMC Bioinformatics 7, S7 (2006)

    Article  Google Scholar 

  18. Margolin, A.A., Wang, K., Lim, W.K., Kustagi, M., Nemenman, I., Califano, A.: Reverse engineering cellular networks. Nature Protocols 1, 662–671 (2006)

    Article  Google Scholar 

  19. Ohashi, Y., Ueda, M., Kawase, T., Kawakami, Y., Toda, M.: Identification of an epigenetically silenced gene, RFX1, in human glioma cells using restriction landmark genomic scanning. Oncogene 23, 7772–7779 (2004)

    Article  Google Scholar 

  20. Prakash, A., Tompa, M.: Discovery of regulatory elements in vertebrates through comparative genomics. Nature Biotechnology 102, 14689–14693 (2005)

    Google Scholar 

  21. Schones, D., Sumazin, P., Zhang, M.Q.: Similarity of position frequency matrices for transcription factor binding sites. Bioinformatics 21, 307–313 (2005)

    Article  Google Scholar 

  22. Smith, A., Sumazin, P., Zhang, M.Q.: Identifying tissue-selective transcription factor binding sites in vertebrate promoters. PNAS 102, 1560–1565 (2005)

    Article  Google Scholar 

  23. Sinha, S., Blanchette, M., Tompa, M.: PhyME: a probabilistic algorithm for finding motifs in sets of orthologous sequences. BMC Bioinformatics 5, 170 (2004)

    Article  Google Scholar 

  24. Wasserman, W.W., Palumbo, M., Thompson, W., Fickett, J.: Human-mouse genome comparisons to locate regulatory sites. Nature Genetics 26, 225–228 (2000)

    Article  Google Scholar 

  25. Wang, T., Stormo, G.: Combining phylogenetic data with co-regulated genes to identify regulatory motifs. Bioinformatics 18, 2369–2380 (2003)

    Article  Google Scholar 

  26. Wang, T., Stormo, G.: Identifying the conserved network of cis-regulatory sites of a eukaryotic genome. PNAS 102, 17400–17405 (2006)

    Article  Google Scholar 

  27. Williams, T., Williams, M., Kuick, R., Misek, D., McDonagh, K., Hanash, S., Innis, J.: Candidate downstream regulated genes of HOX group 13 transcription factors with and without monomeric DNA binding capability. Developmental Biology 279, 462–480 (2005)

    Article  Google Scholar 

  28. Xie, X., Lu, J., Kulbokas, E.J., Golub, T.R., Mootha, V., Lindblad-Toh, K., Lander, E.S., Kellis, M.: Systematic discovery of regulatory motifs in human promoters and 3’ UTRs by comparison of several mammals. Nature 434, 338–345 (2005)

    Article  Google Scholar 

  29. Zhu, Z., Pilpel, Y., Church, G.M.: Computational identification of transcription factor binding sites via a transcription-factor-centric clustering (TFCC) algorithm. J. Mol. Biol. 318, 71–81 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Banerjee, N., Califano, A. (2006). Transcription Factor Centric Discovery of Regulatory Elements in Mammalian Genomes Using Alignment-Independent Conservation Maps. In: Bourque, G., El-Mabrouk, N. (eds) Comparative Genomics. RCG 2006. Lecture Notes in Computer Science(), vol 4205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864127_16

Download citation

  • DOI: https://doi.org/10.1007/11864127_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44529-6

  • Online ISBN: 978-3-540-44530-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics