Skip to main content

Use of Extended Euclidean Algorithm in Solving a System of Linear Diophantine Equations with Bounded Variables

  • Conference paper
Algorithmic Number Theory (ANTS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 4076))

Included in the following conference series:

Abstract

We develop an algorithm to generate the set of all solutions to a system of linear Diophantine equations with lower and upper bounds on the variables. The algorithm is based on the Euclid’s algorithm for computing the GCD of rational numbers. We make use of the ability to parametrise the set of all solutions to a linear Diophantine equation in two variables with a single parameter. The bounds on the variables are translated to bounds on the parameter. This is used progressively by reducing a n variable problem into a two variable problem. Computational experiments indicate that for a given number of variables the running times decreases with the increase in the number of equations in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aardal, K., Hurkens, C.A.J., Lenstra, A.K.: Solving a system of Diophantine equation with lower and upper bounds on the variables. Mathematics of Operations Research 25, 427–442 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beck, M., Zacks, S.: Refined upper bounds for the linear Diophantine problem of Frobenius. Advances in Applied Mathematics 32, 454–467 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bond, J.: Calculating the general solution of a linear Diophantine equation. American Mathematical Monthly 74, 955–957 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  4. Erdös, P., Graham, R.L.: On a linear Diophantine problem of Frobenius. Acta Arithmetica 21, 399–408 (1972)

    MATH  MathSciNet  Google Scholar 

  5. Filgueiras, M., Tomás, A.P.: A fast method for finding the basis of non–negative solutions to a linear Diophantine equation. Journal of Symbolic Computation 19, 507–526 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Greenberg, H.: Solution to a linear Diophantine equation for nonnegative integers. Journal of Algorithms 9, 343–353 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kertzner, S.: The linear Diophantine equation. American Mathematical Monthly 88, 200–203 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  8. Morito, S., Salkin, H.M.: Using the Blankinship algorithm to find the general solution of a linear Diophantine equation. Acta Informatica 13, 379–382 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  9. Rödseth, Ö.J.: On a linear Diophantine problem of Frobenius. Journal für die reine und angewandte Mathematik 301, 431–440 (1978)

    Google Scholar 

  10. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons, Chichester (1986)

    MATH  Google Scholar 

  11. Selmer, E.S., Beyer, Ö.: On a linear Diophantine problem of Frobenius in three variables. Journal für die reine und angewandte Mathematik 301, 161–170 (1978)

    MATH  MathSciNet  Google Scholar 

  12. Vitek, Y.: Bounds for a linear Diophantine problem of Frobenius. Journal of the London Mathematical Society 10, 79–85 (1975)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramachandran, P. (2006). Use of Extended Euclidean Algorithm in Solving a System of Linear Diophantine Equations with Bounded Variables. In: Hess, F., Pauli, S., Pohst, M. (eds) Algorithmic Number Theory. ANTS 2006. Lecture Notes in Computer Science, vol 4076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11792086_14

Download citation

  • DOI: https://doi.org/10.1007/11792086_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36075-9

  • Online ISBN: 978-3-540-36076-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics