Use of Extended Euclidean Algorithm in Solving a System of Linear Diophantine Equations with Bounded Variables

  • Parthasarathy Ramachandran
Conference paper

DOI: 10.1007/11792086_14

Volume 4076 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Ramachandran P. (2006) Use of Extended Euclidean Algorithm in Solving a System of Linear Diophantine Equations with Bounded Variables. In: Hess F., Pauli S., Pohst M. (eds) Algorithmic Number Theory. ANTS 2006. Lecture Notes in Computer Science, vol 4076. Springer, Berlin, Heidelberg

Abstract

We develop an algorithm to generate the set of all solutions to a system of linear Diophantine equations with lower and upper bounds on the variables. The algorithm is based on the Euclid’s algorithm for computing the GCD of rational numbers. We make use of the ability to parametrise the set of all solutions to a linear Diophantine equation in two variables with a single parameter. The bounds on the variables are translated to bounds on the parameter. This is used progressively by reducing a n variable problem into a two variable problem. Computational experiments indicate that for a given number of variables the running times decreases with the increase in the number of equations in the system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Parthasarathy Ramachandran
    • 1
  1. 1.Indian Institute of ScienceBangaloreIndia