Skip to main content

Gene Relation Finding Through Mining Microarray Data and Literature

  • Conference paper
Transactions on Computational Systems Biology V

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 4070))

  • 277 Accesses

Abstract

Finding gene relations has become important in research, since finding relations could assist biologists in finding a genes functionality. This article describes our proposal to combine microarray data and literature to find the relations among genes. The proposed method tries emphasizes the combined use of microarray data and literature rather than microarray data alone. Currently, many scholars use clustering algorithms to analyze microarray data, but these algorithms can find only the same expression mode, not the transcriptional relation between genes. Moreover, most traditional approaches involve all-against-all comparisons that are time-consuming. To reduce the comparison time and to find more relations in a microarray, we propose a method to expand microarray data and use association-rule algorithms to find all possible rules first. With its literature text mining, our method can be used to select the most suitable rules. Under such circumstances, the suitable gene group is selected and the gene comparison frequency is reduced sharply. Finally, we can then apply dynamic Bayesian network (DBN) to find the genes interaction. Unlike other techniques, this method not only reduces the comparison complexity but also reveals more mutual interactions among genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becquet, C., Blachon, S., Jeudy, B., Boulicaut, J.F., Gandrillon, O.: Strong-association-rule mining for large-scale gene-expression data analysis: a case study o human SAGE data. Genome Biol. 12, 1–16 (2003)

    Google Scholar 

  2. Creighton, C., Hanash, S.: Mining gene expression databases for association rules. Bioinformatics 19, 79–86 (2003)

    Article  Google Scholar 

  3. Doddi, S., Marathe, A., Ravi, S.S., Torney, D.C.: Discovery of association rules in medical data. Med. Inform. Internet Med. 26, 25–33 (2001)

    Article  MATH  Google Scholar 

  4. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Science (USA) 95, 14863–14868 (1998)

    Article  Google Scholar 

  5. Eisenberg, D., Marcotte, M.E., Xenarios, I., Yeates, O.T.: Protein function in the post-genomic era. Nature 405, 823–826 (2000)

    Article  Google Scholar 

  6. Ewing, B., Green, P.: Analysis of expressed sequence tags indicates 35,000 human genes. Nature Genet. 25, 232–234 (2000)

    Article  Google Scholar 

  7. Hieter, P., Boguski, M.: Functional genomics: its all how you read it. Science 278, 601–602 (1997)

    Article  Google Scholar 

  8. Jenssen, T., Lagreid, A., Komorowski, J., Hovig, E.: A literature network of human genes for high-throughput analysis of gene expression. Nature genetics 28, 21–28 (2001)

    Article  Google Scholar 

  9. Ji, L., Tan, K.L.: Mining Gene expression data for positive and negative co-regulated gene cluster. Bioinformatics 20(16), 2711–2718 (2004)

    Article  Google Scholar 

  10. Kim, S.Y., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray data using Dynamic Bayesian Networks. Briefing Bioinformatics 4(3), 228–235 (2003)

    Article  Google Scholar 

  11. Kim, S.Y., Imoto, S., Miyano, S.: Dynamic Bayesian networks and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 75, 57–65 (2004)

    Article  Google Scholar 

  12. Murphy, K., Mian, S.: Modeling gene expression data using dynamic Bayesian networks. Technical Report, Computer Science Division. University of California, Berkeley, CA (1999)

    Google Scholar 

  13. Narayanasamy, V., Mukhopadhyay, S., Palakal, M., Potter, D.A.: TransMiner:Mining Transitive Associations among Biological Objects form Text. Journal of biomedical science 11, 864–873 (2004)

    Article  Google Scholar 

  14. Ong, I.M., Glasner, J.D., Page, D.: Modeling regulatory pathways in E.coli from time series expression profiles. Bioinformatics 18, 241–248 (2002)

    Google Scholar 

  15. Salton, G., Wong, A., Yang Cornel, C.S.: A Vector Space Model for Automated Indexing. Journal of the ACM 18(1), 613–620 (1975)

    Article  MATH  Google Scholar 

  16. Shatkay, H., Edwards, S., Boguski, M.: Information retrieval meets gene analysis. IEEE Intelligent Systems, Special Issue on Intelligent Systems in Biology 17(2), 45–53 (2002)

    Google Scholar 

  17. Stephens, M., Palakal, M., Mukhopadhyay, S., Raje, R., Mostafa, J.: Detecting gene relations from medline abstracts. Pac. Symp. Biocomput., 483–495 (2001)

    Google Scholar 

  18. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E.S., Golub, T.R.: Interpreting patterns of gene expression with self-organizing maps methods and application to hematopoietic differentiation. Nature Genetics 96, 2907–2912 (1999)

    Google Scholar 

  19. Tao, Y.C., Leibel, R.L.: Identifying functional relationships among human genes by systematic analysis of biological literature. BMC Bioinformatics 3(16), 1–9 (2002)

    Google Scholar 

  20. Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic determination of genetic network architecture. Nature Genetics 22, 281–285 (1999)

    Article  Google Scholar 

  21. Torgeir, R.H., Astrid, L., Jan, K.: Learning rule-based models of biological process from gene expression time profiles using Gene Ontology. Bioinformatics 19, 1116–1123 (2002)

    Google Scholar 

  22. Webb, G.I., Zhang, S.: K-Optimal Rule Discovery. Data mining and Knowledge Discovery 10(1), 39–79 (2005)

    Article  MathSciNet  Google Scholar 

  23. Zou, M., Conzen, S.D.: A new dynamic Bayesian network approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, Advance Access published on August 12, 2004, pp. 1–29 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, HC., Lee, YS., Huang, TH. (2006). Gene Relation Finding Through Mining Microarray Data and Literature. In: Priami, C., Hu, X., Pan, Y., Lin, T.Y. (eds) Transactions on Computational Systems Biology V. Lecture Notes in Computer Science(), vol 4070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11790105_7

Download citation

  • DOI: https://doi.org/10.1007/11790105_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36048-3

  • Online ISBN: 978-3-540-36049-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics