Skip to main content

A Randomized Online Learning Algorithm for Better Variance Control

  • Conference paper
Learning Theory (COLT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4005))

Included in the following conference series:

Abstract

We propose a sequential randomized algorithm, which at each step concentrates on functions having both low risk and low variance with respect to the previous step prediction function. It satisfies a simple risk bound, which is sharp to the extent that the standard statistical learning approach, based on supremum of empirical processes, does not lead to algorithms with such a tight guarantee on its efficiency. Our generalization error bounds complement the pioneering work of Cesa-Bianchi et al. [12] in which standard-style statistical results were recovered with tight constants using worst-case analysis.

A nice feature of our analysis of the randomized estimator is to put forward the links between the probabilistic and worst-case viewpoint. It also allows to recover recent model selection results due to Juditsky et al. [16] and to improve them in least square regression with heavy noise, i.e. when no exponential moment condition is assumed on the output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alquier, P.: Iterative feature selection in least square regression estimation. Laboratoire de Probabilités et Modèles Aléatoires, Universités Paris 6 and Paris 7 (2005)

    Google Scholar 

  2. Audibert, J.-Y.: Aggregated estimators and empirical complexity for least square regression. Ann. Inst. Henri Poincaré, Probab. Stat. 40(6), 685–736 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Audibert, J.-Y.: A better variance control for PAC-Bayesian classification. Preprint n.905, Laboratoire de Probabilités et Modèles Aléatoires, Universités Paris 6 and Paris 7 (2004), http://www.proba.jussieu.fr/mathdoc/preprints/index.html

  4. Audibert, J.-Y.: PAC-Bayesian statistical learning theory. PhD thesis, Laboratoire de Probabilités et Modèles Aléatoires, Universités Paris 6 and Paris 7 (2004)

    Google Scholar 

  5. Barron, A.: Are bayes rules consistent in information? In: Cover, T.M., Gopinath, B. (eds.) Open Problems in Communication and Computation, pp. 85–91. Springer, Heidelberg (1987)

    Google Scholar 

  6. Barron, A., Yang, Y.: Information-theoretic determination of minimax rates of convergence. Ann. Stat. 27(5), 1564–1599 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bunea, F., Nobel, A.: Sequential procedures for aggregating arbitrary estimators of a conditional mean, Technical report (2005), available from: http://stat.fsu.edu/%7Eflori/ps/bnapril2005IEEE.pdf

  8. Catoni, O.: Statistical Learning Theory and Stochastic Optimization: Ecole d’été de Probabilités de Saint-Flour XXXI. Lecture Notes in Mathematics. Springer, Heidelberg (2001)

    Google Scholar 

  9. Catoni, O.: A mixture approach to universal model selection. preprint LMENS 97-30 (1997), available from: http://www.dma.ens.fr/edition/preprints/Index.97.html

  10. Catoni, O.: Universal aggregation rules with exact bias bound. Preprint n.510 (1999), http://www.proba.jussieu.fr/mathdoc/preprints/index.html#1999

  11. Catoni, O.: A PAC-Bayesian approach to adaptive classification. Preprint n.840, Laboratoire de Probabilités et Modèles Aléatoires, Universités Paris 6 and Paris 7 (2003)

    Google Scholar 

  12. Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D.P., Schapire, R.E., Warmuth, M.K.: How to use expert advice. J. ACM 44(3), 427–485 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cesa-Bianchi, N., Lugosi, G.: On prediction of individual sequences. Ann. Stat. 27(6), 1865–1895 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dudley, R.M.: Central limit theorems for empirical measures. Ann. Probab. 6, 899–929 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Haussler, D., Kivinen, J., Warmuth, M.K.: Sequential prediction of individual sequences under general loss functions. IEEE Trans. on Information Theory 44(5), 1906–1925 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Juditsky, A., Rigollet, P., Tsybakov, A.B.: Learning by mirror averaging (2005), available from arxiv website

    Google Scholar 

  17. Kivinen, J., Warmuth, M.K.: Averaging expert predictions. In: Fischer, P., Simon, H.U. (eds.) EuroCOLT 1999. LNCS, vol. 1572, pp. 153–167. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Merhav, Feder: Universal prediction. IEEE Transactions on Information Theory 44 (1998)

    Google Scholar 

  19. Vapnik, V.: The nature of statistical learning theory, 2nd edn. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  20. Vovk, V.G.: Aggregating strategies. In: COLT 1990: Proceedings of the third annual workshop on Computational learning theory, pp. 371–386. Morgan Kaufmann Publishers Inc, San Francisco (1990)

    Google Scholar 

  21. Vovk, V.G.: A game of prediction with expert advice. Journal of Computer and System Sciences, 153–173 (1998)

    Google Scholar 

  22. Yang, Y.: Combining different procedures for adaptive regression. Journal of multivariate analysis 74, 135–161 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yaroshinsky, R., El-Yaniv, R., Seiden, S.S.: How to better use expert advice. Mach. Learn. 55(3), 271–309 (2004)

    Article  MATH  Google Scholar 

  24. Zhang, T.: Information theoretical upper and lower bounds for statistical estimation. IEEE Transaction on Information Theory (to appear, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Audibert, JY. (2006). A Randomized Online Learning Algorithm for Better Variance Control. In: Lugosi, G., Simon, H.U. (eds) Learning Theory. COLT 2006. Lecture Notes in Computer Science(), vol 4005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11776420_30

Download citation

  • DOI: https://doi.org/10.1007/11776420_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35294-5

  • Online ISBN: 978-3-540-35296-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics