Skip to main content

Hybrid Techniquesand Multipurpose Microscopes

  • Chapter
  • First Online:
Microscale and Nanoscale Heat Transfer

Part of the book series: Topics in Applied Physics ((TAP,volume 107))

  • 1475 Accesses

Abstract

In this Chapter we discuss microscopes able to achieve submicron resolution using thermoelastic effects. Section 1 reviews the physical effects that can be exploited, while Sect. 2 uses a 3D model to illustrate the main features of this kind of microscopy, describing the phenomenon of super-resolution common to all near-field imaging techniques. Section 3 then discusses several hybrid microscopes and Sect. 4 describes the prospects for a technique that is still in its infancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • D. P. Almond, P. M. Patel: Photothermal Science and Techniques (Chapman & Hall, London 1996)

    Google Scholar 

  • L. Thiery, N. Marini, J. P. Prenel, M. Spajer, C. Bainier, D. Courjon: Temperature profile measurements of near-field optical microscopy fiber tips by means of sub-micronic thermocouple, Int. J. Therm. Sci. 39, 519–525 (2000)

    Article  Google Scholar 

  • D. Royer, E. Dieulesaint, T. Valero: Pyroelectric non-destructive testing of BAW transducers, Ultrasonics Symposium Proceedings pp. 908–911 (1984)

    Google Scholar 

  • A. Rosencwaig: Photoacoustic spectroscopy of solids, Opt. Commun. 7, 305–308 (1973)

    Article  ADS  Google Scholar 

  • A. Rosencwaig, A. Gersho: Theory of the photoacoustic effect with solids, J. Appl. Phys. 47, 64–69 (1976)

    Article  ADS  Google Scholar 

  • G. Busse, A. Rosencwaig: Subsurface imaging with photoacoustics, Appl. Phys. Lett. 36, 815–816 (1980)

    Article  ADS  Google Scholar 

  • R. Santos, L. C. Miranda: Theory of photothermal radiometry with solids, J. Appl. Phys. 52, 4194–4198 (1981)

    Article  ADS  Google Scholar 

  • S. J. Sheard, R. K. Appel, M. G. Somekh: Photothermal radiometric imaging of semiconductors, Electron. Lett. 23, 227–228 (1987)

    Article  Google Scholar 

  • D. Maillet, J. C. Batsale, A. Bendada, A. Degiovanni: M'ethodes int'egrales et contr^ole non-destructif par thermographie infrarouge stimul'ee, Revue G'en'erale de Thermique 35, 14S–27S (1996)

    Google Scholar 

  • A. C. Boccara, D. Fournier, J. Badoz: Thermo-optical spectroscopy: Detection by the mirage effect, Appl. Phys. Lett. 36, 130–132 (1980)

    Article  ADS  Google Scholar 

  • J. C. Murphy, L. C. Aadmot: Photothermal spectroscopy using optical beam probing: Mirage effect, J. Appl. Phys. 51, 4580–4588 (1980)

    Article  ADS  Google Scholar 

  • A. Salazar, A. Sanchez-Lavega, J. Fernandez: Thermal diffusivity measurements on solids using collinear mirage detection, J. Appl. Phys. 74, 1539–1547 (1993)

    Article  ADS  Google Scholar 

  • F. Lepoutre, D. Fournier, A. C. Boccara: Nondestructive control of weldings using mirage detection, J. Appl. Phys. 57, 1009–1015 (1985)

    Article  ADS  Google Scholar 

  • J. Opsal, M. W. Taylor, W. L. Smith, A. Rosencwaig: Temporal behavior of modulated optical reflectance in silicon, J. Appl. Phys. 61, 240–248 (1987)

    Article  ADS  Google Scholar 

  • A. Mandelis, J. F. Power: Frequency-modulated impulse response photothermal detection through optical reflectance. 1: Theory, Appl. Opt. 27, 3397–3417 (1988)

    Article  ADS  Google Scholar 

  • F. Lepoutre, P. Forge, F. C. Chen, D. Balageas: Micronic thermal characterizations of cracks and interfaces in composite materials by photoreflectance, La Recherche A'erospatiale 1, 39–52 (1994)

    Google Scholar 

  • G. Rousset, L. Bertrand, P. Cielo: A pulsed thermoelastic analysis of photothermal surface displacements in layered materials, J. Appl. Phys. 57, 4396–4405 (1985)

    Article  ADS  Google Scholar 

  • J. C. Murphy, J. W. Maclachlan, L. C. Aamodt: Imaging contrast processes in thermal and thermoacoustic imaging, IEEE Trans. Ultrason., Ferroelec., Freq. Cont. 33, 529–541 (1986)

    Article  ADS  Google Scholar 

  • B. Cretin, D. Hauden: Thermoacoustic microscopy using optical excitation and detection, SPIE Proc. 809, 64–69 (1987)

    ADS  Google Scholar 

  • R. M. White: Generation of elastic waves by transient surface heating, J. Appl. Phys. 34, 3559–3567 (1963)

    Article  ADS  Google Scholar 

  • A. Rosencwaig, A. Gersho: Theory of the photoacoustic effect with solids, J. Appl. Phys. 47, 64–69 (1976)

    Article  ADS  Google Scholar 

  • G. C. Wetsel: Photothermal generation of thermoelastic waves in composite media, IEEE Trans. Ultrason., Ferroelec., Freq. Cont. 33, 450–461 (1986)

    Article  Google Scholar 

  • W. Jackson, N. M. Amer: Piezoelectric photoacoustic detection: Theory and experiment, J. Appl. Phys. 51, 3343–3353 (1980)

    Article  ADS  Google Scholar 

  • H. Delavault: Transformation de Hankel en coordonn'ees cylindriques, Publications scientifiques et techniques 71 (1957)

    Google Scholar 

  • C. K. Youngdahl: On the completeness of a set of stress functions appropriate to the solution of elasticity problems, Int. J. Eng. Sci. 7, 61–79 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  • B. Cretin, N. Daher, B. Cavallier: Thermoelastic modeling: Application to super-resolution in photothermal and thermoelastic microscopy, in Proceedings of SPIE Optical Inspection and Micromeasurements II, SPIE 3098 (1997) pp. 466–475

    Google Scholar 

  • B. Cretin: Super-resolution in photothermal and thermoelastic microscopies: Extension of the near-field concept, Revue G'en'erale de Thermique 37, 556–564 (1998)

    Article  Google Scholar 

  • A. Rosencwaig: High resolution photoacoustic thermal-wave microscopy, Appl. Phys. Lett. 36, 725–727 (1980)

    Article  ADS  Google Scholar 

  • F. A. McDonald, G. C. Wetsel, C. G. Clark: Effects of frequency on definition and resolution in photothermal imaging of subsurface structure, Ultrasonics Symposium Proc. pp. 672–676 (1983)

    Google Scholar 

  • L. J. Inglehart, K. R. Grice, L. D. Favro, P. K. Kuo: Spatial resolution of thermal wave microscopes, Appl. Phys. Lett. 43, 446–448 (1983)

    Article  ADS  Google Scholar 

  • P. Vairac, B. Cretin: Heterodyne laser probe using a double pass, Opt. Commun. 132, 19–23 (1996)

    Article  ADS  Google Scholar 

  • J. C. Murphy, J. W. Maclachlan, L. C. Aamodt: Imaging contrast processes in thermal and thermoacoustic imaging, IEEE Trans. Ultrason., Ferroelec., Freq. Cont. 33, 529–541 (1986)

    Article  ADS  Google Scholar 

  • B. Cretin, J. Takadoum, A. Mahmoud, D. Hauden: Metallurgical applications of the thermoelastic microscope, Thin Solid Films 209, 127–131 (1992)

    Article  ADS  Google Scholar 

  • U. Durig, D. W. Pohl, F. Rohner: Near-field optical-scanning microscopy, J. Appl. Phys. 59, 3318–3327 (1986)

    Article  ADS  Google Scholar 

  • D. Courjon, K. Sarayeddine, M. Spajer: Scanning tunneling optical microscopy, Opt. Commun. 71, 23–28 (1989)

    Article  ADS  Google Scholar 

  • D. I. Kavaldjiev, R. Toledo-Crow, M. Vaez-Iravani: On the heating of the fiber tip in a near-field scanning optical microscope, Appl. Phys. Lett. 67, 2771–2773 (1995)

    Article  ADS  Google Scholar 

  • K. E. Goodson, M. Asheghi: Near-field optical thermometry, Microscale Thermophys. Eng. 1, 225–235 (1997)

    Article  Google Scholar 

  • B. Cavallier: Microscopies photothermiques et thermo'elastique conventionnelles et `a sonde locale: Th'eorie et exp'erimentation, Ph.D. thesis, University of Franche-Comt'e, France (2000)

    Google Scholar 

  • J. Varesi, A. Majumdar: Scanning Joule expansion microscopy at nanometer scales, Appl. Phys. Lett. 72, 37–39 (1998)

    Article  ADS  Google Scholar 

  • M. Cannaerts, D. Buntinx, A. Volodin, C. Van Haesendonck: Calibration of a scanning Joule expansion microscope (SJEM), Appl. Phys. A 72, 67–70 (2001)

    Article  ADS  Google Scholar 

  • J. Pelzl, J. Bolte, F. Niebisch, D. Dietzel, H. H. Althaus: New developments in thermal wave microscopy, Anal. Sci. 17, s53–s56 (2001) Special Issue

    Google Scholar 

  • A. Hammiche, D. M. Price, E. Dupas, G. Mills, A. Kulik, M. Reading, J. M. R. Weaver, H. M. Pollock: Two adaptations of thermomechanical modulation for microscopy: SThEM and dynamic L-TMA (scanning thermal expansion microscopy and dynamic localised thermomechanical analysis), J. Microsc. 199, 180–190 (2000)

    Article  Google Scholar 

  • N. Trannoy, P. Grossel: Photothermal effects induced by laser excitation in scanning tunneling microscope, Int. J. Thermal Sci. 39, 532–536 (2000)

    Article  Google Scholar 

  • R. Patois: M'ethodes optiques et acoustiques pour les microscopies thermiques et thermo-'elastiques aux 'echelles micro- et nanom'etriques, Ph.D. thesis, University of Franche-Comt'e, France (2003)

    Google Scholar 

  • G. E. Moore: Cramming more components onto integrated circuits, Electron. 38, 114–117 (1965)

    Google Scholar 

  • H. J. Mamin, D. Rugar: Thermomechanical writing with an atomic force microscope tip, Appl. Phys. Lett. 61, 1003–1005 (1992)

    Article  ADS  Google Scholar 

  • B. W. Chui, T. D. Stowe, Y. S. Ju, K. E. Goodson, T. W. Kenny, H. J. Mamin, B. D. Terris, R. P. Ried, D. Rugar: Low-stiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density afm thermomechanical data storage, IEEE J. Microelectromech. Syst. 7, 69–78 (1998)

    Article  Google Scholar 

  • R. Held, T. Heinzel, A. P. Studerus, K. Ensslin, M. Holland: Semiconductor quantum point contact fabricated by lithography with an atomic force microscope, Appl. Phys. Lett. 71, 2689–2691 (1997)

    Article  ADS  Google Scholar 

  • D. M. Eigler, E. K. Schweizer: Positioning single atoms with a scanning tunnelling microscope, Nature 344, 524–526 (1990)

    Article  ADS  Google Scholar 

  • E. S. Snow, P. M. Campbell, F. K. Perkins: Nanofabrication with proximal probes, Proc. of the IEEE 85, 601–611 (1997)

    Article  Google Scholar 

  • C. F. Quate: Manipulation and modification of nanometer scale objects with the STM, in L. Esaki (Ed.): Highlights in Condensed Matter Physics and Future Prospects (Plenum, New York 1991) pp. 573–630

    Google Scholar 

  • R. Leach, J. Haycocks, K. Jackson, A. Lewis, S. Oldfield, A. Yacoot: Advances in traceable nanometrology at the National Physical Laboratory, Nanotechnol. 12, R1–R6 (2001)

    Article  ADS  Google Scholar 

  • O. Jusko, X. Zhao, H. Wolf, G. Wilkening: Design and three-dimensional calibration of a measuring scanning tunneling microscope for metrological applications, Rev. Sci. Instrum. 65, 2514–2518 (1994)

    Article  ADS  Google Scholar 

  • R. Berger, C. Gerber, H. P. Lang, J. K. Gimzewski: Micromechanics: A toolbox for femtoscale science: Towards a laboratory on a tip, Microelectron. Eng. 35, 373–379 (1996) (International Conference on Micro- and Nanofabrication, Glasgow, 1996)

    Article  Google Scholar 

  • E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C. H. Chang: Near-field magneto-optics and high density data storage, Appl. Phys. Lett. 61, 142–144 (1992)

    Article  ADS  Google Scholar 

  • M. Lutwyche, C. Andreoli, G. Binnig, J. Brugger, U. Drechsler, W. Haeberle, H. Rohrer, H. Rothuizer, P. Vettiger: Microfabrication and parallel operation of 55 AFM cantilever arrays for data storage and imaging, presented at MEMS 98, Heidelberg (1998)

    Google Scholar 

  • B. W. Chui, H. J. Mamin, B. D. Terris, T. D. Stowe, D. Rugar, T. W. Kenny: Low-stiffness silicon cantilevers for thermal writing and piezoresistive readback with the atomic force microscope, Appl. Phys. Lett. 69, 2767–2769 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sebastian Volz

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Cretin, B., Vairac, P. Hybrid Techniquesand Multipurpose Microscopes. In: Volz, S. (eds) Microscale and Nanoscale Heat Transfer. Topics in Applied Physics, vol 107. Springer, Berlin, Heidelberg . https://doi.org/10.1007/11767862_11

Download citation

  • DOI: https://doi.org/10.1007/11767862_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36056-8

  • Online ISBN: 978-3-540-36057-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics