Skip to main content

Hypergraph Model of Multi-residue Interactions in Proteins: Sequentially–Constrained Partitioning Algorithms for Optimization of Site-Directed Protein Recombination

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3909))

Abstract

Relationships among amino acids determine stability and function and are also constrained by evolutionary history. We develop a probabilistic hypergraph model of residue relationships that generalizes traditional pairwise contact potentials to account for the statistics of multi-residue interactions. Using this model, we detected non-random associations in protein families and in the protein database. We also use this model in optimizing site-directed recombination experiments to preserve significant interactions and thereby increase the frequency of generating useful recombinants. We formulate the optimization as a sequentially-constrained hypergraph partitioning problem; the quality of recombinant libraries wrt a set of breakpoints is characterized by the total perturbation to edge weights. We prove this problem to be NP-hard in general, but develop exact and heuristic polynomial-time algorithms for a number of important cases. Application to the beta-lactamase family demonstrates the utility of our algorithms in planning site-directed recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tanaka, S., Scheraga, H.: Medium and long range interaction parameters between amino acids for predicting three dimensional strutures of proteins. Macromolecules 9, 945–950 (1976)

    Article  Google Scholar 

  2. Miyazawa, S., Jernigan, R.: Estimation of effective interresidue contact energies from protein crystal structures: Quasi-chemical approximation. Macromolecules 18, 531–552 (1985)

    Article  Google Scholar 

  3. Maiorov, V., Crippen, G.: Contact potential that recognizes the correct folding of globular proteins. J. Mol. Biol. 227, 876–888 (1992)

    Article  Google Scholar 

  4. Simons, K.T., Kooperberg, C., Huang, E., Baker, D.: Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol. 268, 209–225 (1997)

    Article  Google Scholar 

  5. Kihara, D., Lu, H., Kolinski, A., Skolnick, J.: TOUCHSTONE: an ab initio protein structure prediction method that uses threading-based tertiary restraints. PNAS 98, 10125–10130 (2001)

    Article  Google Scholar 

  6. Godzik, A.: Fold recognition methods. Methods Biochem. Anal. 44, 525–546 (2003)

    Google Scholar 

  7. Betancourt, M., Thirumalai, D.: Pair potentials for protein folding: Choice of reference states and sensitivity of predictive native states to variations in the interaction schemes. Protein Sci. 8, 361–369 (1999)

    Article  Google Scholar 

  8. Carter Jr., C., LeFebvre, B., Cammer, S., Tropsha, A., Edgell, M.: Four-body potentials reveal protein-specific correlations to stability changes caused by hydrophobic core mutations. J. Mol. Biol. 311, 621–638 (2001)

    Google Scholar 

  9. Krishnamoorthy, B., Tropsha, A.: Development of a four-body statistical pseudo-potential to discriminate native from non-native protein conformations. Bioinformatics 19, 1540–1548 (2003)

    Article  Google Scholar 

  10. Simons, K., Ruczinski, I., Kooperberg, C., Fox, B., Bystroff, C., Baker, D.: Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins. PROTEINS: Structure, Function, and Genetics 34, 82–95 (1999)

    Article  Google Scholar 

  11. Gobel, U., Sander, C., Schneider, R., Valencia, A.: Correlated mutations and residue contacts in proteins. PROTEINS: Structure, Function, and Genetics 18, 309–317 (1994)

    Article  Google Scholar 

  12. Lockless, S., Ranganathan, R.: Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286, 295–299 (1999)

    Article  Google Scholar 

  13. Thomas, J., Ramakrishnan, N., Bailey-Kellogg, C.: Graphical models of residue coupling in protein families. In: 5th ACM SIGKDD Workshop on Data Mining in Bioinformatics (BIOKDD) (2005)

    Google Scholar 

  14. Stemmer, W.: Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 (1994)

    Article  Google Scholar 

  15. Ostermeier, M., Shim, J., Benkovic, S.: A combinatorial approach to hybrid enzymes independent of DNA homology. Nat. Biotechnol. 17, 1205–1209 (1999)

    Article  Google Scholar 

  16. Lutz, S., Ostermeier, M., Moore, G., Maranas, C., Benkovic, S.: Creating multiple-crossover DNA libraries independent of sequence identity. PNAS 98, 11248–11253 (2001)

    Article  Google Scholar 

  17. Sieber, V., Martinez, C., Arnold, F.: Libraries of hybrid proteins from distantly related sequences. Nat. Biotechnol. 19, 456–460 (2001)

    Article  Google Scholar 

  18. Voigt, C., Martinez, C., Wang, Z., Mayo, S., Arnold, F.: Protein building blocks preserved by recombination. Nat. Struct. Biol. 9, 553–558 (2002)

    Google Scholar 

  19. O’Maille, P., Bakhtina, M., Tsai, M.: Structure-based combinatorial protein engineering (SCOPE). J. Mol. Biol. 321, 677–691 (2002)

    Article  Google Scholar 

  20. Aguinaldo, A., Arnold, F.: Staggered extension process (StEP) in vitro recombination. Methods Mol. Biol. 231, 105–110 (2003)

    Google Scholar 

  21. Coco, W.: RACHITT: Gene family shuffling by random chimeragenesis on transient templates. Methods Mol. Biol. 231, 111–127 (2003)

    Google Scholar 

  22. Castle, L., Siehl, D., Gorton, R., Patten, P., Chen, Y., Bertain, S., Cho, H.J., Duck, N., Wong, J., Liu, D., Lassner, M.: Discovery and directed evolution of a glyphosate tolerance gene. Science 304, 1151–1154 (2004)

    Article  Google Scholar 

  23. Meyer, M., Silberg, J., Voigt, C., Endelman, J., Mayo, S., Wang, Z., Arnold, F.: Library analysis of SCHEMA-guided protein recombination. Protein Sci. 12, 1686–1693 (2003)

    Article  Google Scholar 

  24. Endelman, J., Silberg, J., Wang, Z.G., Arnold, F.: Site-directed protein recombination as a shortest-path problem. Protein Eng., Design and Sel. 17, 589–594 (2004)

    Article  Google Scholar 

  25. Sippl, M.: Calculation of conformational ensembles from potentials of mean force. an approach to the knowledge-based prediction of local structures in globular proteins. J. Mol. Biol. 213, 859–883 (1990)

    Article  Google Scholar 

  26. Wang, G., Dunbrack, R.L.J.: Pisces: a protein sequence culling server. Bioinformatics 19, 1589–1591 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ye, X., Friedman, A.M., Bailey-Kellogg, C. (2006). Hypergraph Model of Multi-residue Interactions in Proteins: Sequentially–Constrained Partitioning Algorithms for Optimization of Site-Directed Protein Recombination. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds) Research in Computational Molecular Biology. RECOMB 2006. Lecture Notes in Computer Science(), vol 3909. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732990_2

Download citation

  • DOI: https://doi.org/10.1007/11732990_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33295-4

  • Online ISBN: 978-3-540-33296-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics