Skip to main content

Structure from Periodic Motion

  • Conference paper
Spatial Coherence for Visual Motion Analysis (SCVMA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3667))

Included in the following conference series:

Abstract

We show how to exploit temporal periodicity of moving objects to perform 3D reconstruction. The collection of period-separated frames serve as a surrogate for multiple rigid views of a particular pose of the moving target, thus allowing the use of standard techniques of multiview geometry. We motivate our approach using human motion capture data, for which the true 3D positions of the markers are known. We next apply our approach to image sequences of pedestrians captured with a camcorder. Applications of our proposed approach include 3D motion capture of natural and manmade periodic moving targets from monocular video sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cutler, R., Davis, L.: Robust real-time periodic motion detection, analysis, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8) (2000)

    Google Scholar 

  2. Faugeras, O.D.: What can be seen in three dimensions with an uncalibrated stereo rig? In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 563–578. Springer, Heidelberg (1992)

    Google Scholar 

  3. Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: ISPRS Intercommission Workshop, Interlaken (June 1987)

    Google Scholar 

  4. François, A.R.J., Medioni, G.G., Waupotitsch, R.: Mirror symmetry \(\Longrightarrow\) 2-view stereo geometry. Image and Vision Computing 21(2), 137–143 (2003)

    Article  Google Scholar 

  5. Gårding, J.: Surface orientation and curvature from differential texture distortion. In: Proc. 5th Int’l Conf. on Computer Vision, Boston, pp. 733–739 (1995)

    Google Scholar 

  6. Gross, A.D., Boult, T.E.: Analyzing skewed symmetries. Int’l. Journal of Computer Vision 13(1), 91–111 (1994)

    Article  Google Scholar 

  7. Hartley, R.I., Gupta, R., Chang, T.: Stereo from uncalibrated cameras. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn. (1992)

    Google Scholar 

  8. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  9. Kanade, T.: Recovery of the three-dimensional shape of an object from a single view. Artificial Intelligence 17, 409–460 (1981)

    Article  Google Scholar 

  10. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: Proc. 6th Int’l Conf. on Computer Vision, Vancouver (2001)

    Google Scholar 

  11. Liu, Y., Collins, R.T., Tsin, Y.: Gait sequence analysis using Frieze patterns. In: Proc. 7th Europ. Conf. Comput. Vision (2002)

    Google Scholar 

  12. Lowe, D.G.: Demo software: Invariant keypoint detector, http://www.cs.ubc.ca/spider/lowe/keypoints/

  13. Koch, R., Pollefeys, M., Van Gool, L.: Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters. Int’l. Journal of Computer Vision 32(1), 7–25 (1999)

    Article  Google Scholar 

  14. Malik, J., Rosenholtz, R.: Computing local surface orientation and shape from texture for curved surfaces. Int’l. Journal of Computer Vision 23(2), 149–168 (1997)

    Article  Google Scholar 

  15. Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: European Conference on Computer Vision, pp. 128–142. Springer, Heidelberg (2002)

    Google Scholar 

  16. Song, Y., Goncalves, L., Perona, P.: Unsupervised learning of human motion. IEEE Trans. Pattern Analysis and Machine Intelligence 25(7), 814–827 (2003)

    Article  Google Scholar 

  17. Torr, P.H.S., Murray, D.W.: The development and comparison of robust methods for estimating the fundamental matrix. Int. Journal of Computer Vision 24(3), 271–300 (1997)

    Article  Google Scholar 

  18. Wills, J., Agarwal, S., Belongie, S.: What went where. In: Proc. IEEE Conf. Comput. Vision and Pattern Recognition, vol. 1, pp. 37–44 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Belongie, S., Wills, J. (2006). Structure from Periodic Motion. In: MacLean, W.J. (eds) Spatial Coherence for Visual Motion Analysis. SCVMA 2004. Lecture Notes in Computer Science, vol 3667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11676959_2

Download citation

  • DOI: https://doi.org/10.1007/11676959_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32533-8

  • Online ISBN: 978-3-540-32534-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics