Skip to main content

Abstract

Life-like adaptive behaviour is so far an illusive goal in robot control. A capability to act successfully in a complex, ambiguous, and harsh environment would vastly increase the application domain of robotic devices. Established methods for robot control run up against a complexity barrier, yet living organisms amply demonstrate that this barrier is not a fundamental limitation. To gain an understanding of how the nimble behaviour of organisms can be duplicated in made-for-purpose devices we are exploring the use of biological cells in robot control. This paper describes an experimental setup that interfaces an amoeboid plasmodium of Physarum polycephalum with an omnidirectional hexapod robot to realise an interaction loop between environment and plasticity in control. Through this bio-electronic hybrid architecture the continuous negotiation process between local intracellular reconfiguration on the micro-physical scale and global behaviour of the cell in a macroscale environment can be studied in a device setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lettvin, J.Y., Maturana, H.R., McCulloch, W.S., Pitts, W.H.: What the frog’s eye tells the frog’s brain. Proc. Inst. Radio Engr. 47, 1940–1951 (1959); Reprinted in: Corning, W.C., Balaban, M. (eds.): The Mind: Biological Approaches to its Functions, pp. 233–258 (1968) 1968, .

    Google Scholar 

  2. Braitenberg, V.: Experiments in Synthetic Psychology. MIT Press, Cambridge (1984)

    Google Scholar 

  3. Webb, B.: View from the boundary. Biological Bulletin 200(2), 184–189 (2001)

    Article  Google Scholar 

  4. Hasslacher, B., Tilden, M.W.: Living machines. Robotics and Autonomous Systems, 143–169 (1995)

    Google Scholar 

  5. Beer, R.D.: Intelligence as Adaptive Behavior, an Experiment in Computational Neuroethology. Academic Press, London (1990)

    MATH  Google Scholar 

  6. Chiel, H.J., Beer, R.D.: The brain has a body: adaptive behavior emerges from interaction of nervous system, body and environment. Trends In Neuroscience 12, 553–557 (1997)

    Article  Google Scholar 

  7. Maturana, H.R., Varela, F.J.: Autopoiesis and Cognition: The Realization of the Living. Boston Studies in the Philosophy of Science, vol. 42. D. Reidel Publishing, Dordecht (1980)

    Google Scholar 

  8. Cariani, P.: Some epistemological implications of devices which construct their own sensors and effectors. In: Varela, F.J., Bourgine, P. (eds.) Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, pp. 484–493. MIT Press, Cambridge (1992)

    Google Scholar 

  9. Chapin, J.K., Moxon, K.A., Markowitz, R.S., Nicolelis, M.A.L.: Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nature neuroscience 2(7), 664–670 (1999)

    Article  Google Scholar 

  10. DeMarse, T.B., Wagenaar, D.A., Blau, A.W., Potter, S.M.: The neurally controlled animat: Biological brains acting with simulated bodies. Autonomous Robots 11, 305–310 (2001)

    Article  MATH  Google Scholar 

  11. Rinaldo, K.: Augmented fish reality. ARS Electronica Center, Linz (2004), See also: http://accad.osu.edu/~rinaldo/works/augmented/

  12. Adler, J., Tso, W.-W.: “Decision”-making in bacteria: Chemotactic response of Escherichia coli to conflicting stimuli. Science 184, 1292–1294 (1974)

    Article  Google Scholar 

  13. Zauner, K.-P.: Molecular information technology. Critical Reviews in Solid State and Material Sciences 30(1), 33–69 (2005)

    Article  Google Scholar 

  14. Rothstein, J.: Information, measurement, and quantum mechanics (1951); Reprinted in: H. S. Leff and A. F. Rex (Eds.): Maxwell’s Demon—Entropy, Information, Computing, pp. 104–108. Adam Hilger, Bristol (1990)

    Google Scholar 

  15. Skoultchi, A.I., Morowitz, H.J.: Information storage and survival of biological systems at temperatures near absolute zero. Yale J. Biol. Med. 37, 158–163 (1964)

    Google Scholar 

  16. Kondo, H., Yamamoto, M., Watanabe, M.: Reversible intracellular displacement of the cytoskeletal protein and organelles by ultracentrifugation of the sympathetic ganglion. J. Submicrosc. Cytol. Pathol. 24, 241–250 (1992)

    Google Scholar 

  17. Conrad, M.: The price of programmability. The Universal Turing Machine: A Half-Century Survey, 285–307 (1988)

    Google Scholar 

  18. Korohoda, W., Rakoczy, L., Walczak, T.: On the control mechanism of protoplasmic streamings in the plasmodia of Myxomycetes. Acta Protozoologica VII(29), 363–373 (1970)

    Google Scholar 

  19. Ueda, T., Matsumoto, K., Kobatake, Y.: Spatial and temporal organization of intracellular adenine nucleotides and cyclic nucleotides in relation to rhythmic motility in physarum plasmodium. Experimental Cell Research 162(2), 486–494 (1986)

    Article  Google Scholar 

  20. Durham, A.C.H., Ridgway, E.B.: Control of chemotaxis in physarum polycephalum. The Journal of Cell Biology 69, 218–223 (1976)

    Article  Google Scholar 

  21. Miura, H., Yano, M.: A model of organization of size invariant positional information in taxis of physarum plasmodium. Progress of Theoretical Physics 100(2), 235–251 (1998)

    Article  Google Scholar 

  22. Miyake, Y., Tabata, S., Murakami, H., Yano, M., Shimizu, H.: Environmental-dependent self-organization of positional information field in chemotaxis of physarum plasmodium. Journal of Theoretical Biology 178, 341–353 (1996)

    Article  Google Scholar 

  23. Nakagaki, T., Yamada, H., Toth, A.: Intelligence: Maze-solving by an amoeboid organism. Nature 407, 470 (2000)

    Article  Google Scholar 

  24. Nakagaki, T., Kobayashi, R., Nishiura, Y., Ueda, T.: Obtaining multiple separate food sources: behavioural intelligence in the physarum plasmodium. R. Soc. Proc.: Biol. Sci. 271(1554), 2305–2310 (2004)

    Article  Google Scholar 

  25. Aono, M.: Personal communication (2004)

    Google Scholar 

  26. Tsuda, S., Aono, M., Gunji, Y.-P.: Robust and emergent physarum logical-computing. BioSystems 73, 45–55 (2004)

    Article  Google Scholar 

  27. Zauner, K.-P.: From prescriptive programming of solid-state devices to orchestrated self-organisation of informed matter. In: Banâtre, J.-P., Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 47–55. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  28. Takamtsu, A., Fujii, T., Endo, I.: Control of interaction strength in a network of the true slime mold by a microfabricated structure. BioSystems 55, 33–38 (2000)

    Article  Google Scholar 

  29. Nomura, S.: Symbolization of an object and its freedom in biological systems. PhD thesis, Kobe University (2001)

    Google Scholar 

  30. Ueda, T., Mori, Y., Nakagaki, T., Kobatake, Y.: Action spectra for superoxide generation and UV and visible light photoavoidance in plasmodia of physarum polycephalum. Photochemistry and Photobiology 48, 705–709 (1988)

    Article  Google Scholar 

  31. Conrad, M.: Emergent computation through self-assembly. Nanobiology 2, 5–30 (1993)

    Google Scholar 

  32. Gunji, Y.-P., Takahashi, T., Aono, M.: Dynamical infomorphism: form of endo-perspective. Chaos, Solitons and Fractals 22, 1077–1101 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsuda, S., Zauner, KP., Gunji, YP. (2006). Robot Control: From Silicon Circuitry to Cells. In: Ijspeert, A.J., Masuzawa, T., Kusumoto, S. (eds) Biologically Inspired Approaches to Advanced Information Technology. BioADIT 2006. Lecture Notes in Computer Science, vol 3853. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11613022_5

Download citation

  • DOI: https://doi.org/10.1007/11613022_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31253-6

  • Online ISBN: 978-3-540-32438-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics