Skip to main content

Covarieties of Coalgebras: Comonads and Coequations

  • Conference paper
Theoretical Aspects of Computing – ICTAC 2005 (ICTAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3722))

Included in the following conference series:

Abstract

Coalgebras provide effective models of data structures and state-transition systems. A virtual covariety is a class of coalgebras closed under coproducts, images of coalgebraic morphisms, and subcoalgebras defined by split equalisers. A covariety has the stronger property of closure under all subcoalgebras, and is behavioural if it is closed under domains of morphisms, or equivalently under images of bisimulations. There are many computationally interesting properties that define classes of these kinds.

We identify conditions on the underlying category of a comonad \(\mathbb{G}\) which ensure that there is an exact correspondence between (behavioural/virtual) covarieties of \(\mathbb{G}\)-coalgebras and subcomonads of \(\mathbb{G}\) defined by comonad morphisms to \(\mathbb{G}\) with natural categorical properties. We also relate this analysis to notions of coequationally defined classes of coalgebras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reichel, H.: An approach to object semantics based on terminal co-algebras. Mathematical Structures in Computer Science 5, 129–152 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Jacobs, B.: Objects and classes, coalgebraically. In: Freitag, B., Jones, C.B., Lengauer, C., Schek, H.J. (eds.) Object-Orientation with Parallelism and Persistence, pp. 83–103. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  3. Rutten, J.J.M.M.: A calculus of transition systems (towards universal coalgebra). In: Ponse, A., de Rijke, M., Venema, Y. (eds.) Modal Logic and Process Algebra. CSLI Lecture Notes No. 53, pp. 231–256. CSLI Publications, Stanford (1995)

    Google Scholar 

  4. Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Science 249, 3–80 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. Bulletin of the European Association for Theoretical Computer Science 62, 222–259 (1997)

    MATH  Google Scholar 

  6. Jacobs, B.: Exercises in coalgebraic specification. In Backhouse. In: Blackhouse, R., Crole, R.L., Gibbons, J. (eds.) Algebraic and Coalgebraic Methods in the Mathematics of Program Construction. LNCS, vol. 2297, pp. 237–280. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Birkhoff, G.: On the structure of abstract algebras. Proceedings of the Cambridge Philosophical Society 31, 433–454 (1935)

    Article  Google Scholar 

  8. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of the Association for Computing Machinery 32, 137–161 (1985)

    MATH  MathSciNet  Google Scholar 

  9. Goldblatt, R.: A comonadic account of behavioural covarieties of coalgebras. Mathematical Structures in Computer Science 15, 243–269 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gumm, H.P., Schröder, T.: Coalgebraic structure from weak limit preserving functors. Electronic Notes in Theoretical Computer Science 33 (2000)

    Google Scholar 

  11. Awodey, S., Hughes, J.: The coalgebraic dual of Birkhoff’s variety theorem. Technical Report CMU-PHIL-109, Department of Philosophy, Carnegie Mellon University (2000)

    Google Scholar 

  12. Hughes, J.: A Study of Categories of Algebras and Coalgebras. PhD thesis, Carnegie Mellon University (2001)

    Google Scholar 

  13. Awodey, S., Hughes, J.: Modal operators and the formal dual of Birkhoff’s completeness theorem. Mathematical Structures in Computer Science 13, 233–258 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Banaschewski, B., Herrlich, H.: Subcategories defined by implications. Houston Journal of Mathematics 2, 149–171 (1976)

    MATH  MathSciNet  Google Scholar 

  15. Adámek, J., Porst, H.E.: On varieties and covarieties in a category. Mathematical Structures in Computer Science 13, 201–232 (2003)

    Article  MATH  Google Scholar 

  16. Borceux, F.: Handbook of Categorical Algebra 2. Categories and Structures. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  17. Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, Heidelberg (1985)

    MATH  Google Scholar 

  18. Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)

    MATH  Google Scholar 

  19. Herrlich, H., Strecker, G.: Category Theory. Allyn and Bacon, Newton (1973)

    MATH  Google Scholar 

  20. Wyler, O.: Lecture Notes on Topoi and Quasitopoi. World Scientific, Singapore (1991)

    MATH  Google Scholar 

  21. Kurz, A.: Logics for Coalgebras and Applications to Computer Science. PhD thesis, Ludwig-Maximilians-Universität München (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clouston, R., Goldblatt, R. (2005). Covarieties of Coalgebras: Comonads and Coequations. In: Van Hung, D., Wirsing, M. (eds) Theoretical Aspects of Computing – ICTAC 2005. ICTAC 2005. Lecture Notes in Computer Science, vol 3722. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11560647_19

Download citation

  • DOI: https://doi.org/10.1007/11560647_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29107-7

  • Online ISBN: 978-3-540-32072-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics